Code for Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights

Overview

Piggyback: https://arxiv.org/abs/1801.06519

Pretrained masks and backbones are available here: https://uofi.box.com/s/c5kixsvtrghu9yj51yb1oe853ltdfz4q

Datasets in PyTorch format are available here: https://uofi.box.com/s/ixncr3d85guosajywhf7yridszzg5zsq
All rights belong to the respective publishers. The datasets are provided only to aid reproducibility.

The PyTorch-friendly Places365 dataset can be downloaded from http://places2.csail.mit.edu/download.html

Place masks in checkpoints/ and unzipped datasets in data/

VGG-16 ResNet-50 DenseNet-121
CUBS 20.75 18.23 19.24
Stanford Cars 11.78 10.19 10.62
Flowers 6.93 4.77 4.91
WikiArt 29.80 28.57 29.33
Sketch 22.30 19.75 20.05

Note that the numbers in the paper are averaged over multiple runs for each ordering of datasets. These numbers were obtained by evaluating the models on a Titan X (Pascal). Note that numbers on other GPUs might be slightly different (~0.1%) owing to cudnn algorithm selection. https://discuss.pytorch.org/t/slightly-different-results-on-k-40-v-s-titan-x/10064

Requirements:

Python 2.7 or 3.xx
torch==0.2.0.post3
torchvision==0.1.9
torchnet (pip install git+https://github.com/pytorch/[email protected])
tqdm (pip install tqdm)

Run all code from the src/ directory, e.g. ./scripts/run_piggyback_training.sh

Training:

Check out src/scripts/run_piggyback_training.sh.

This script uses the default hyperparams and trains a model as described in the paper. The best performing model on the val set is saved to disk. This saved model includes the real-valued mask weights.

By default, we use the models provided by torchvision as our backbone networks. If you intend to evaluate with the masks provided by us, please use the correct version of torch and torchvision. In case you want to use a different version, but still want to use our masks, then download the pytorch_backbone networks provided in the box link above. Make appropriate changes to your pytorch code to load those backbone models.

Saving trained masks only.

Check out src/scripts/run_packing.sh.

This extracts the binary/ternary masks from the above trained models, and saves them separately.

Eval:

Use the saved masks, apply them to a backbone network and run eval.

By default, our backbone models are those provided with torchvision.
Note that to replicate our results, you have to use the package versions specified above.
Newer package versions might have different weights for the backbones, and the provided masks won't work.

cd src  # Run everything from src/

CUDA_VISIBLE_DEVICES=0 python pack.py --mode eval --dataset flowers \
  --arch vgg16 \
  --maskloc ../checkpoints/vgg16_binary.pt
Owner
Arun Mallya
NVIDIA Research
Arun Mallya
MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python

Digital Image Processing Python MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python TO-DO: Refactor scripts, curren

Merve Noyan 24 Oct 16, 2022
Code for the paper: Learning Adversarially Robust Representations via Worst-Case Mutual Information Maximization (https://arxiv.org/abs/2002.11798)

Representation Robustness Evaluations Our implementation is based on code from MadryLab's robustness package and Devon Hjelm's Deep InfoMax. For all t

Sicheng 19 Dec 07, 2022
YuNetのPythonでのONNX、TensorFlow-Lite推論サンプル

YuNet-ONNX-TFLite-Sample YuNetのPythonでのONNX、TensorFlow-Lite推論サンプルです。 TensorFlow-LiteモデルはPINTO0309/PINTO_model_zoo/144_YuNetのものを使用しています。 Requirement Op

KazuhitoTakahashi 8 Nov 17, 2021
torchsummaryDynamic: support real FLOPs calculation of dynamic network or user-custom PyTorch ops

torchsummaryDynamic Improved tool of torchsummaryX. torchsummaryDynamic support real FLOPs calculation of dynamic network or user-custom PyTorch ops.

Bohong Chen 1 Jan 07, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

The Apache Software Foundation 20.2k Jan 08, 2023
Repository for benchmarking graph neural networks

Benchmarking Graph Neural Networks Updates Nov 2, 2020 Project based on DGL 0.4.2. See the relevant dependencies defined in the environment yml files

NTU Graph Deep Learning Lab 2k Jan 03, 2023
《Train in Germany, Test in The USA: Making 3D Object Detectors Generalize》(CVPR 2020)

Train in Germany, Test in The USA: Making 3D Object Detectors Generalize This paper has been accpeted by Conference on Computer Vision and Pattern Rec

Xiangyu Chen 101 Jan 02, 2023
Cross View SLAM

Cross View SLAM This is the associated code and dataset repository for our paper I. D. Miller et al., "Any Way You Look at It: Semantic Crossview Loca

Ian D. Miller 99 Dec 09, 2022
Tensorforce: a TensorFlow library for applied reinforcement learning

Tensorforce: a TensorFlow library for applied reinforcement learning Introduction Tensorforce is an open-source deep reinforcement learning framework,

Tensorforce 3.2k Jan 02, 2023
The implemention of Video Depth Estimation by Fusing Flow-to-Depth Proposals

Flow-to-depth (FDNet) video-depth-estimation This is the implementation of paper Video Depth Estimation by Fusing Flow-to-Depth Proposals Jiaxin Xie,

32 Jun 14, 2022
Towards End-to-end Video-based Eye Tracking

Towards End-to-end Video-based Eye Tracking The code accompanying our ECCV 2020 publication and dataset, EVE. Authors: Seonwook Park, Emre Aksan, Xuco

Seonwook Park 76 Dec 12, 2022
A curated list of automated deep learning (including neural architecture search and hyper-parameter optimization) resources.

Awesome AutoDL A curated list of automated deep learning related resources. Inspired by awesome-deep-vision, awesome-adversarial-machine-learning, awe

D-X-Y 2k Dec 30, 2022
Label Studio is a multi-type data labeling and annotation tool with standardized output format

Website • Docs • Twitter • Join Slack Community What is Label Studio? Label Studio is an open source data labeling tool. It lets you label data types

Heartex 11.7k Jan 09, 2023
DC540 hacking challenge 0x00005a.

dc540-0x00005a DC540 hacking challenge 0x00005a. PROMOTIONAL VIDEO - WATCH NOW HERE ON YOUTUBE CRITICAL PART 5A VIDEO - WATCH NOW HERE ON YOUTUBE Prio

Kevin Thomas 3 May 09, 2022
Tiny Kinetics-400 for test

Kinetics-400迷你数据集 English | 简体中文 该数据集旨在解决的问题:参照Kinetics-400数据格式,训练基于自己数据的视频理解模型。 数据集介绍 Kinetics-400是视频领域benchmark常用数据集,详细介绍可以参考其官方网站Kinetics。整个数据集包含40

38 Jan 06, 2023
A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning

CLEVR Dataset Generation This is the code used to generate the CLEVR dataset as described in the paper: CLEVR: A Diagnostic Dataset for Compositional

Facebook Research 503 Jan 04, 2023
PyTorch Implementations for DeeplabV3 and PSPNet

Pytorch-segmentation-toolbox DOC Pytorch code for semantic segmentation. This is a minimal code to run PSPnet and Deeplabv3 on Cityscape dataset. Shor

Zilong Huang 746 Dec 15, 2022
[NAACL & ACL 2021] SapBERT: Self-alignment pretraining for BERT.

SapBERT: Self-alignment pretraining for BERT This repo holds code for the SapBERT model presented in our NAACL 2021 paper: Self-Alignment Pretraining

Cambridge Language Technology Lab 104 Dec 07, 2022
RETRO-pytorch - Implementation of RETRO, Deepmind's Retrieval based Attention net, in Pytorch

RETRO - Pytorch (wip) Implementation of RETRO, Deepmind's Retrieval based Attent

Phil Wang 556 Jan 04, 2023
Implementation for "Conditional entropy minimization principle for learning domain invariant representation features"

Implementation for "Conditional entropy minimization principle for learning domain invariant representation features". The code is reproduced from thi

1 Nov 02, 2022