CLI and Streamlit applications to create APIs from Excel data files within seconds, using FastAPI

Overview

FastAPI-Wrapper CLI & APIness Streamlit App

Arvindra Sehmi, Oxford Economics Ltd. | Website | LinkedIn (Updated: 21 April, 2021)

fastapi-wrapper is motivated by the work of jrieke on fastapi-csv.

Create APIs from data files within seconds, using FastAPI

This is a Python package to create APIs from data files (Excel XLSX and CSV only), using a lightweight & fully customizable wrapper around FastAPI. Endpoints and query parameters are auto-generated based on the column names and data types in the data file. Its contents is written to either a temporary in-memory or persistent SQLite database, so the API can be blazing fast, even for huge files, especially for the in-memory case.

TOC

  • Why did I implement this?
  • Mods
  • Streamlit App Demo
  • CLI Demo
  • How to use fastapi-wrapper from the command line (CSV Example)
  • How to use fastapi-wrapper from Python (XLSX Example)
  • Example using the API in Power BI
  • My thoughts on additional requirements
  • The APINESS Factor
  • Resources
  • Epilogue

Why did I implement this?

  • To enhance and extend some internal Oxford Economics (OE) tools, e.g., Modelit project [OE clients only, sorry!] so that MDL-generated data exports can enjoy some apiness :-)
  • An easy way to expose Excel-Files-as-Databases with a REST API so they can be queried in Streamlit, and other apps such as Power BI and Jupyter Notebooks
  • It can be useful for mocking data sources in CI/CD testing pipelines
  • To experiment with FastAPI, which has garnered a lot of attention and enterprise adoption (e.g. Microsoft)

Value of SQL Model DBs to OE?

  • Command line tooling lends itself to pipeline batch automation working with model bases
  • Use a standard, performant and scaleable data format and query language
  • Portable across multiple device form factors and operating systems
  • Easily shareable locally, in the cloud and edge data networks
  • Much better for data analytics and vizualization, e.g. direct connectors in Power BI & Tableau
  • Ability to store multiple model bases in a single SQL database, e.g. multiple scenarios or model vintages
  • Easy to export data to multiple target formats from a SQL DB using commonly available tools and programming languages
  • Can be used to augment model data exports from OE's Online Global Economic Model (SkyMod) API

Mods

The changes I made to jrieke's original implementation are:

  • Built a Streamlit application to:
    • Interactively upload one or more Excel data files
    • Configure each file's API endpoint
    • Generate a SQLite database, for all or each file
    • Enable downloading of generated SQLite databases, and
    • Launch FastAPI to serve the APIs
  • Simplified naming of auto-generated query params added to the API
  • Added cols, where and cmd query params for richer SQL queries of the endpoint (including defense against destructive SQL injections)
  • Error handling
  • Rendering response data as JSON and HTML
  • Restructured return json results to add some metadata useful for debugging, for example:
{   "metadata": {
        "database": "macro",
        "table": "custommacromodel_l_a",
        "sql_query": "SELECT * FROM custommacromodel_l_a WHERE (Location IN (\"United Kingdom\")) LIMIT 2",
        "full_count": 1278,
        "results_count": 1278
    },
    "data": [
        {
        "id": 457027,
        "Location": "United Kingdom",
        "Indicator": "GDP, agriculture, real, LCU",
            .
            .
            .
        "Year": 1980,
        "Value": 8210.16
        },
            .
            .
            .
    ]
}

Streamlit App Demo

In this demo:

  1. The user successively uploads one or more XLSX/CSV files
  2. The app displays a row of edit fields for each uploaded file allowing the user to configure the database name, table name, and update mode
  3. The configuration and files are submitted for processing, that is, databases are generated and populated with their file data and (Fast)API endpoints are created
  4. After the user has uploaded and processed all their files, the FastAPI server is started making the API live
  5. The user interacts with the live API via a browser

st_demo

IMPORTANT: The API is launched via uvicorn on its own thread and can't be killed. The only way currently to stop uvicorn and Streamlit is to kill the Python host process.


CLI Demo

(This demo gives you a good idea of the command line system. Note, the latest version differs slightly in terms of the API base URL format used.)

demo


How to use fastapi-wrapper from the command line (CSV Example)

Installing the CLI

# Use pip in the root folder
pip install .

# Or, running setup from the root folder
python setup.py install
# To uninstall
pip uninstall fastapi-wrapper

Running the CLI

Use the CSV data file (472718 rows) in this repo for testing (CustomMacroModel_L_A.csv). To start an API, run one of the following commands:

# From file
fastapi-wrapper CustomMacroModel_L_A.csv

# Directly from URL
fastapi-wrapper https://raw.githubusercontent.com/asehmi/fastapi-wrapper/main/CustomMacroModel_L_A.csv

# If you provide an xlsx file, then add XLSX as the second argument on the command line (see Python example below)

Either command should start a fastapi instance in uvicorn (a lightning-fast ASGI web server) on the default host and port.

(base) C:\Dev\apiness>fastapi-wrapper custommacromodel_l_a.csv --host localhost --port 8000 --database macro
fastapi_wrapper v0.4.2
Creating > Database: macro | From file: custommacromodel_l_a.csv | Type: CSV | Update mode: replace
Initializing FastAPI_Wrapper...
Starting API server (uvicorn)...
Check out the API docs at http://localhost:8000/docs | http://localhost:8000/redoc
--------------------------------------------------------------------------------
INFO:     Started server process [18828]
INFO:uvicorn.error:Started server process [18828]
INFO:     Waiting for application startup.
INFO:uvicorn.error:Waiting for application startup.
INFO:     Application startup complete.
INFO:uvicorn.error:Application startup complete.
INFO:     Uvicorn running on http://localhost:8000 (Press CTRL+C to quit)
INFO:uvicorn.error:Uvicorn running on http://localhost:8000 (Press CTRL+C to quit)

installation

Command line switches

fastapi-wrapper --help command line switch prints some useful info:

(base) C:\Dev\apiness>fastapi-wrapper --help
fastapi_wrapper v0.4.2
Usage: fastapi-wrapper [OPTIONS] DATA_PATH [DATA_FORMAT]:[CSV|XLSX]

  Create APIs from CSV or XLSX data files within seconds, using fastapi.

  Just pass along a data file and this command will start a fastapi instance
  with auto-generated endpoints & query parameters to access the data.

Arguments:
  DATA_PATH                 Path to the data file  [required]
  [DATA_FORMAT]:[CSV|XLSX]  Format of data file  [default: CSV]

Options:
  --database TEXT                 Sqlite DB name. Defaults to in-memory DB.
                                  [default: :memory:]

  --if-exists [replace|append|fail]
                                  Defines treatment of database if it exists
                                  [default: replace]

  --start-server / --no-start-server
                                  Start server.  [default: True]
  --host TEXT                     IP to run the API on  [default: 127.0.0.1]
  --port INTEGER                  Port to run the API on  [default: 8000]
  --help                          Show this message and exit.

For example:

fastapi-wrapper custommacromodel_l_a.csv --host localhost --port 8000 --database macro
  • fastapi-wrapper auto-generates endpoints and query parameters based on the CSV file
  • Here, the API will have an endpoint /macro/custommacromodel_l_a
  • The URL fragments are /<database name | :memory:>/<database table name>
  • The table name is the same as the file name, but lowercased
  • The endpoint can be queried using the imported file's column names
  • And finally, a SQLite database named macro.db, will also be created

IMPORTANT: The endpoint fragments and column names used as query parameters are lowercased. Spaces in their names will be replaced with underscore ('_').

API documentation

The auto-generated API documentation is available here:

Querying the API

In a browser window enter the following parameterised URLs:

(All URL fragments below are prefixed with http://localhost:8000)

  • /macro/custommacromodel_l_a?location=United Kingdom
  • /macro/custommacromodel_l_a?location=United Kingdom&indicatorcode=GVA

Additionally, fastapi-wrapper creates some convenience query parameters for specific data types, e.g.

  • /macro/custommacromodel_l_a?year_gt=2020 (for int/float)
  • /macro/custommacromodel_l_a?location_in=Kingdom (for string, watch out: this one is case sensitive!)
  • /macro/custommacromodel_l_a?year_lte=2020&Location_in=United Kingdom&indicator_in=GDPAGR

Numerical values can be quoted or not. Strings should not be quoted in query values.

You can explicitly specify SQL "where" read-only clauses using the where parameter. Destructive SQL commands and clauses cause an exception.

  • /macro/custommacromodel_l_a?where=Year>="2029" AND Year<="2031" AND Indicator LIKE "%GDP%" AND LocationCode IN ("JAPAN","HK")

SQL command modifiers can be added to using the cmd parameter.

  • /macro/custommacromodel_l_a?where=Year>=2030 AND Year<=2031 AND Location="United Kingdom" AND Indicator LIKE "%GDP%"&cmd=LIMIT 5

Note, strings in where and cmd values are quoted and must obey SQL syntax rules.

The columns returned by a query can be specified (including aliases) with the cols parameter.

  • /macro/custommacromodel_l_a?where=Year>="2029" AND Year<="2031" AND LocationCode IN ("JAPAN","HK")&cols=Location, Indicator, Year, Value&cmd=LIMIT 10
  • /macro/custommacromodel_l_a?where=LocationCode IN ("JAPAN","HK")&cols=LocationCode as LOCCODE, Indicator as VAR, Year as YR, Value as VAL&cmd=LIMIT 10

IMPORTANT: Where column names are referenced as query parameters (not parameter values), they must be lowercased. When they appear as values for where and cols parameters, case does not matter.

json_data

Downloading generated SQLite database

  • /download/macro.db or /download/macro

Rendering results as HTML

By default results are rendered as JSON where tabluar data is available on the data key. To render the data as an HTML table, simply add a tohtml parameter to the query.

  • /macro/custommacromodel_l_a?where=Year>="2029" AND Year<="2031" AND Indicator LIKE "%GDP%" AND LocationCode IN ("JAPAN","HK")&tohtml

html_table


How to use fastapi-wrapper from Python (XLSX Example)

Ensure the required packages are installed:

pip install -r requirements.txt

Create a file app.py:

from fastapi_wrapper import FastAPI_Wrapper

app = FastAPI_Wrapper().create_database(database='gcfs', data_path='GCFS Countries.xlsx', data_format='XLSX', if_exists='replace')

Start from terminal just like a normal fastapi app:

uvicorn app:app

OR, create a file main.py:

from fastapi_wrapper import FastAPI_Wrapper
import uvicorn

app = FastAPI_Wrapper().create_database(database='gcfs', data_path='GCFS Countries.xlsx', data_format='XLSX', if_exists='replace')
uvicorn.run(app, host='localhost', port='8000')

Start from terminal just like a normal python app:

python main.py

The queries are similar to the CSV case above, except the endpoint is different:

  • /gcfs/gcfs_countries?cmd=LIMIT 1000
  • /gcfs/gcfs_countries?where=Location LIKE "%Kingdom%" OR Location LIKE "%States%"

This shows use of cols query parameter:

  • /gcfs/gcfs_countries?cols=location, indicator, year, value&location_in=United Kingdom

This shows use of _ina and _inz query parameters to match at the beginning and end of values respectively, and column name aliases:

  • /gcfs/gcfs_countries?location_in=United Kingdom&indicator_code_ina=GDP&indicator_code_inz=USC&cols=Location as LOC,Indicator as VAR,Indicator_Code as VARCODE,Value as VAL,Year as YR

Extending the API

The cool thing: FastAPI_Wrapper only extends FastAPI. Therefore, you can do all the stuff you can do with a normal fastapi instance, e.g. add a new endpoint:

# Add a new endpoint, just like in normal fastapi
@app.get("/hello")
def hello(self):
    return {"Hello:", "World"}

This way you can easily modify endpoints previously generated from the CSV file.

Updating data

If your CSV file changes, you can update the API data with:

app.update_database()

Note, this will only update the data, not the API endpoints or query parameters. To do that, you need to create a new FastAPI_Wrapper instance or re-start uvicorn.


Example using the API in Power BI

See the file TestReport.pbix (requires the free PBI Desktop Application on Windows)

M-Language data transformation script

m_lang

Power BI report

pbi_rept


My thoughts on additional requirements

FastAPI_Wrapper is a neat idea, but "What is the real value prop?"

  • Needs a decent SQL DB, Redis, or a cloud DB. SQLite is not slow, apparently, SQLite is faster than nearly every other database at read-heavy use cases, and it's super versatile, but I think we need a streaming query API to make it easier to consume in BI tools.

  • This program relies on the built-in SQLite Python binding, and may come with limits we don't want. Need to investigate:

  • Would it be better supporting GraphQL?

  • Extend to handle TXT files, different table layouts, etc.

  • Have the ability to import from Excel named ranges / data tables.

  • [DONE] Have the ability to download databases.

  • Break tight coupling between the api endpoint and the Excel filename

    • [DONE] User should interact with an "upload & generate api" workflow
    • Provide a namespace to isolate APIs from one another (could be the organisation name, user name, etc.) - details can come from a login profile - useful for online deployments
    • [DONE implicitly] Specify the endpoint name
    • [DONE except for namespace] Upload file and provision API using file contents type information, namespace, and endpoint name
    • Access API via: /namespace/endpoint_name?....
  • During provisioning workflow, allow an API access key to be generated for the endpoint (or for all endpoints in the login account)

    • To access API protected endpoints, the user should send an apikey header variable
    • (Study FastAPI docs re: protecting endpoints)
  • Allow users to clone an API endpoint

  • Provide integrations (which will require system upload and management APIs)

    • Dropbox / OneDrive / GDrive listeners
    • Zapier, IFTTT, etc.
  • Customized client-side error handling hooks (400s, 500s, etc.)

  • The autogenerated API docs should be specific to each namespace + endpoint combination, rather than the host domain

    • http://localhost:8000/namespace/endpoint/docs, not
    • http://localhost:8000/docs

The APINESS Factor

apiness

testimonial


Resources

There are tons of resources on the web. These are some I have looked at:

Datasette

This is an excellent, very complete solution of Excel files >> SQLite with vizualisations.

(Found after I started my project; so is there any need to develop this solution further??)


Epilogue

Looks like some folks are making a living from this sort of thing!

Owner
Arvindra
Arvindra
Easily integrate socket.io with your FastAPI app 🚀

fastapi-socketio Easly integrate socket.io with your FastAPI app. Installation Install this plugin using pip: $ pip install fastapi-socketio Usage To

Srdjan Stankovic 210 Dec 23, 2022
Learn to deploy a FastAPI application into production DigitalOcean App Platform

Learn to deploy a FastAPI application into production DigitalOcean App Platform. This is a microservice for our Try Django 3.2 project. The goal is to extract any and all text from images using a tec

Coding For Entrepreneurs 59 Nov 29, 2022
Generate modern Python clients from OpenAPI

openapi-python-client Generate modern Python clients from OpenAPI 3.x documents. This generator does not support OpenAPI 2.x FKA Swagger. If you need

Triax Technologies 558 Jan 07, 2023
Flask-vs-FastAPI - Understanding Flask vs FastAPI Web Framework. A comparison of two different RestAPI frameworks.

Flask-vs-FastAPI Understanding Flask vs FastAPI Web Framework. A comparison of two different RestAPI frameworks. IntroductionIn Flask is a popular mic

Mithlesh Navlakhe 1 Jan 01, 2022
FastAPI Socket.io with first-class documentation using AsyncAPI

fastapi-sio Socket.io FastAPI integration library with first-class documentation using AsyncAPI The usage of the library is very familiar to the exper

Marián Hlaváč 9 Jan 02, 2023
Sample-fastapi - A sample app using Fastapi that you can deploy on App Platform

Getting Started We provide a sample app using Fastapi that you can deploy on App

Erhan BÜTE 2 Jan 17, 2022
Docker image with Uvicorn managed by Gunicorn for high-performance FastAPI web applications in Python 3.6 and above with performance auto-tuning. Optionally with Alpine Linux.

Supported tags and respective Dockerfile links python3.8, latest (Dockerfile) python3.7, (Dockerfile) python3.6 (Dockerfile) python3.8-slim (Dockerfil

Sebastián Ramírez 2.1k Dec 31, 2022
Complete Fundamental to Expert Codes of FastAPI for creating API's

FastAPI FastAPI is a modern, fast (high-performance), web framework for building APIs with Python 3 based on standard Python type hints. The key featu

Pranav Anand 1 Nov 28, 2021
FastAPI + PeeWee = <3

FastAPIwee FastAPI + PeeWee = 3 Using Python = 3.6 🐍 Installation pip install FastAPIwee 🎉 Documentation Documentation can be found here: https://

16 Aug 30, 2022
A basic JSON-RPC implementation for your Flask-powered sites

Flask JSON-RPC A basic JSON-RPC implementation for your Flask-powered sites. Some reasons you might want to use: Simple, powerful, flexible and python

Cenobit Technologies 273 Dec 01, 2022
Hook Slinger acts as a simple service that lets you send, retry, and manage event-triggered POST requests, aka webhooks

Hook Slinger acts as a simple service that lets you send, retry, and manage event-triggered POST requests, aka webhooks. It provides a fully self-contained docker image that is easy to orchestrate, m

Redowan Delowar 96 Jan 02, 2023
OpenAPI for Todolist RESTful API

swagger-client OpenAPI for Todolist RESTful API This Python package is automatically generated by the Swagger Codegen project: API version: 1 Package

Iko Afianando 1 Dec 19, 2021
SuperSaaSFastAPI - Python SaaS Boilerplate for building Software-as-Service (SAAS) apps with FastAPI, Vue.js & Tailwind

Python SaaS Boilerplate for building Software-as-Service (SAAS) apps with FastAP

Rudy Bekker 31 Jan 10, 2023
Sample FastAPI project that uses async SQLAlchemy, SQLModel, Postgres, Alembic, and Docker.

FastAPI + SQLModel + Alembic Sample FastAPI project that uses async SQLAlchemy, SQLModel, Postgres, Alembic, and Docker. Want to learn how to build th

228 Jan 02, 2023
京东图片点击验证码识别

京东图片验证码识别 本项目是@yqchilde 大佬的 JDMemberCloseAccount 识别图形验证码(#45)思路验证,若你也有思路可以提交Issue和PR也可以在 @yqchilde 的 TG群 找到我 声明 本脚本只是为了学习研究使用 本脚本除了采集处理验证码图片没有其他任何功能,也

AntonVanke 37 Dec 22, 2022
Practice-python is a simple Fast api project for dealing with modern rest api technologies.

Practice Python Practice-python is a simple Fast api project for dealing with modern rest api technologies. Deployment with docker Go to the project r

0 Sep 19, 2022
A rate limiter for Starlette and FastAPI

SlowApi A rate limiting library for Starlette and FastAPI adapted from flask-limiter. Note: this is alpha quality code still, the API may change, and

Laurent Savaete 562 Jan 01, 2023
FastAPI interesting concepts.

fastapi_related_stuffs FastAPI interesting concepts. FastAPI version :- 0.70 Python3 version :- 3.9.x Steps Test Django Like settings export FASTAPI_S

Mohd Mujtaba 3 Feb 06, 2022
Stac-fastapi built on Tile38 and Redis to support caching

stac-fastapi-caching Stac-fastapi built on Tile38 to support caching. This code is built on top of stac-fastapi-elasticsearch 0.1.0 with pyle38, a Pyt

Jonathan Healy 4 Apr 11, 2022
Cube-CRUD is a simple example of a REST API CRUD in a context of rubik's cube review service.

Cube-CRUD is a simple example of a REST API CRUD in a context of rubik's cube review service. It uses Sqlalchemy ORM to manage the connection and database operations.

Sebastian Andrade 1 Dec 11, 2021