Fast scatter density plots for Matplotlib

Overview

Azure Status Coverage Status

About

Plotting millions of points can be slow. Real slow... 😴

So why not use density maps? âš¡

The mpl-scatter-density mini-package provides functionality to make it easy to make your own scatter density maps, both for interactive and non-interactive use. Fast. The following animation shows real-time interactive use with 10 million points, but interactive performance is still good even with 100 million points (and more if you have enough RAM).

Demo of mpl-scatter-density with NY taxi data

When panning, the density map is shown at a lower resolution to keep things responsive (though this is customizable).

To install, simply do:

pip install mpl-scatter-density

This package requires Numpy, Matplotlib, and fast-histogram - these will be installed by pip if they are missing. Both Python 2.7 and Python 3.x are supported, and the package should work correctly on Linux, MacOS X, and Windows.

Usage

There are two main ways to use mpl-scatter-density, both of which are explained below.

scatter_density method

The easiest way to use this package is to simply import mpl_scatter_density, then create Matplotlib axes as usual but adding a projection='scatter_density' option (if your reaction is 'wait, what?', see here). This will return a ScatterDensityAxes instance that has a scatter_density method in addition to all the usual methods (scatter, plot, etc.).

import numpy as np
import mpl_scatter_density
import matplotlib.pyplot as plt

# Generate fake data

N = 10000000
x = np.random.normal(4, 2, N)
y = np.random.normal(3, 1, N)

# Make the plot - note that for the projection option to work, the
# mpl_scatter_density module has to be imported above.

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1, projection='scatter_density')
ax.scatter_density(x, y)
ax.set_xlim(-5, 10)
ax.set_ylim(-5, 10)
fig.savefig('gaussian.png')

Which gives:

Result from the example script

The scatter_density method takes the same options as imshow (for example cmap, alpha, norm, etc.), but also takes the following optional arguments:

  • dpi: this is an integer that is used to determine the resolution of the density map. By default, this is 72, but you can change it as needed, or set it to None to use the default for the Matplotlib backend you are using.
  • downres_factor: this is an integer that is used to determine how much to downsample the density map when panning in interactive mode. Set this to 1 if you don't want any downsampling.
  • color: this can be set to any valid matplotlib color, and will be used to automatically make a monochromatic colormap based on this color. The colormap will fade to transparent, which means that this mode is ideal when showing multiple density maps together.

Here is an example of using the color option:

import numpy as np
import matplotlib.pyplot as plt
import mpl_scatter_density  # noqa

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1, projection='scatter_density')

n = 10000000

x = np.random.normal(0.5, 0.3, n)
y = np.random.normal(0.5, 0.3, n)

ax.scatter_density(x, y, color='red')

x = np.random.normal(1.0, 0.2, n)
y = np.random.normal(0.6, 0.2, n)

ax.scatter_density(x, y, color='blue')

ax.set_xlim(-0.5, 1.5)
ax.set_ylim(-0.5, 1.5)

fig.savefig('double.png')

Which produces the following output:

Result from the example script

ScatterDensityArtist

If you are a more experienced Matplotlib user, you might want to use the ScatterDensityArtist directly (this is used behind the scenes in the above example). To use this, initialize the ScatterDensityArtist with the axes as first argument, followed by any arguments you would have passed to scatter_density above (you can also take a look at the docstring for ScatterDensityArtist). You should then add the artist to the axes:

from mpl_scatter_density import ScatterDensityArtist
a = ScatterDensityArtist(ax, x, y)
ax.add_artist(a)

Advanced

Non-linear stretches for high dynamic range plots

In some cases, your density map might have a high dynamic range, and you might therefore want to show the log of the counts rather than the counts. You can do this by passing a matplotlib.colors.Normalize object to the norm argument in the same wasy as for imshow. For example, the astropy package includes a nice framework for making such a Normalize object for different functions. The following example shows how to show the density map on a log scale:

import numpy as np
import mpl_scatter_density
import matplotlib.pyplot as plt

# Make the norm object to define the image stretch
from astropy.visualization import LogStretch
from astropy.visualization.mpl_normalize import ImageNormalize
norm = ImageNormalize(vmin=0., vmax=1000, stretch=LogStretch())

N = 10000000
x = np.random.normal(4, 2, N)
y = np.random.normal(3, 1, N)

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1, projection='scatter_density')
ax.scatter_density(x, y, norm=norm)
ax.set_xlim(-5, 10)
ax.set_ylim(-5, 10)
fig.savefig('gaussian_log.png')

Which produces the following output:

Result from the example script

Adding a colorbar

You can show a colorbar in the same way as you would for an image - the following example shows how to do it:

import numpy as np
import mpl_scatter_density
import matplotlib.pyplot as plt

N = 10000000
x = np.random.normal(4, 2, N)
y = np.random.normal(3, 1, N)

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1, projection='scatter_density')
density = ax.scatter_density(x, y)
ax.set_xlim(-5, 10)
ax.set_ylim(-5, 10)
fig.colorbar(density, label='Number of points per pixel')
fig.savefig('gaussian_colorbar.png')

Which produces the following output:

Result from the example script

Color-coding 'markers' with individual values

In the same way that a 1-D array of values can be passed to Matplotlib's scatter function/method, a 1-D array of values can be passed to scatter_density using the c= argument:

import numpy as np
import mpl_scatter_density
import matplotlib.pyplot as plt

N = 10000000
x = np.random.normal(4, 2, N)
y = np.random.normal(3, 1, N)
c = x - y + np.random.normal(0, 5, N)

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1, projection='scatter_density')
ax.scatter_density(x, y, c=c, vmin=-10, vmax=+10, cmap=plt.cm.RdYlBu)
ax.set_xlim(-5, 13)
ax.set_ylim(-5, 11)
fig.savefig('gaussian_color_coded.png')

Which produces the following output:

Result from the example script

Note that to keep performance as good as possible, the values from the c attribute are averaged inside each pixel of the density map, then the colormap is applied. This is a little different to what scatter would converge to in the limit of many points (since in that case it would apply the color to all the markers than average the colors).

Q&A

Isn't this basically the same as datashader?

This follows the same ideas as datashader, but the aim of mpl-scatter-density is specifically to bring datashader-like functionality to Matplotlib users. Furthermore, mpl-scatter-density is intended to be very easy to install - for example it can be installed with pip. But if you have datashader installed and regularly use bokeh, mpl-scatter-density won't do much for you. Note that if you are interested in datashader and Matplotlib together, there is a work in progress (pull request) by @tacaswell to create a Matplotlib artist similar to that in this package but powered by datashader.

What about vaex?

Vaex is a powerful package to visualize large datasets on N-dimensional grids, and therefore has some functionality that overlaps with what is here. However, the aim of mpl-scatter-density is just to provide a lightweight solution to make it easy for users already using Matplotlib to add scatter density maps to their plots rather than provide a complete environment for data visualization. I highly recommend that you take a look at Vaex and determine which approach is right for you!

Why on earth have you defined scatter_density as a projection?

If you are a Matplotlib developer: I truly am sorry for distorting the intended purpose of projection 😊 . But you have to admit that it's a pretty convenient way to have users get a custom Axes sub-class even if it has nothing to do with actual projection!

Where do you see this going?

There are a number of things we could add to this package, for example a way to plot density maps as contours, or a way to color code each point by a third quantity and have that reflected in the density map. If you have ideas, please open issues, and even better contribute a pull request! 😄

Can I contribute?

I'm glad you asked - of course you are very welcome to contribute! If you have some ideas, you can open issues or create a pull request directly. Even if you don't have time to contribute actual code changes, I would love to hear from you if you are having issues using this package.

[![Build Status](https://dev.azure.com/thomasrobitaille/mpl-scatter-density/_apis/build/status/astrofrog.mpl-scatter-density?branchName=master)](https://dev.azure.com/thomasrobitaille/mpl-scatter-density/_build/latest?definitionId=17&branchName=master)

Running tests

To run the tests, you will need pytest and the pytest-mpl plugin. You can then run the tests with:

pytest mpl_scatter_density --mpl
Owner
Thomas Robitaille
Thomas Robitaille
Data visualization using matplotlib

Data visualization using matplotlib project instructions Top 5 Most Common Coffee Origins In this visualization I used data from Ankur Chavda on Kaggl

13 Oct 27, 2021
Plot-configurations for scientific publications, purely based on matplotlib

TUEplots Plot-configurations for scientific publications, purely based on matplotlib. Usage Please have a look at the examples in the example/ directo

Nicholas Krämer 487 Jan 08, 2023
Visualizations of some specific solutions of different differential equations.

Diff_sims Visualizations of some specific solutions of different differential equations. Heat Equation in 1 Dimension (A very beautiful and elegant ex

2 Jan 13, 2022
Mattia Ficarelli 2 Mar 29, 2022
YOPO is an interactive dashboard which generates various standard plots.

YOPO is an interactive dashboard which generates various standard plots.you can create various graphs and charts with a click of a button. This tool uses Dash and Flask in backend.

ADARSH C 38 Dec 20, 2022
Extract data from ThousandEyes REST API and visualize it on your customized Grafana Dashboard.

ThousandEyes Grafana Dashboard Extract data from the ThousandEyes REST API and visualize it on your customized Grafana Dashboard. Deploy Grafana, Infl

Flo Pachinger 16 Nov 26, 2022
Movies-chart - A CLI app gets the top 250 movies of all time from imdb.com and the top 100 movies from rottentomatoes.com

movies-chart This CLI app gets the top 250 movies of all time from imdb.com and

3 Feb 17, 2022
TensorDebugger (TDB) is a visual debugger for deep learning. It extends TensorFlow with breakpoints + real-time visualization of the data flowing through the computational graph

TensorDebugger (TDB) is a visual debugger for deep learning. It extends TensorFlow (Google's Deep Learning framework) with breakpoints + real-time visualization of the data flowing through the comput

Eric Jang 1.4k Dec 15, 2022
A script written in Python that generate output custom color (HEX or RGB input to x1b hexadecimal)

ColorShell ─ 1.5 Planned for v2: setup.sh for setup alias This script converts HEX and RGB code to x1b x1b is code for colorize outputs, works on ou

Riley 4 Oct 31, 2021
A pandas extension that solves all problems of Jalai/Iraninan/Shamsi dates

Jalali Pandas Extentsion A pandas extension that solves all problems of Jalai/Iraninan/Shamsi dates Features Series Extenstion Convert string to Jalal

51 Jan 02, 2023
Streamlit component for Let's-Plot visualization library

streamlit-letsplot This is a work-in-progress, providing a convenience function to plot charts from the Lets-Plot visualization library. Example usage

Randy Zwitch 9 Nov 03, 2022
Analysis and plotting for motor/prop/ESC characterization, thrust vs RPM and torque vs thrust

esc_test This is a Python package used to plot and analyze data collected for the purpose of characterizing a particular propeller, motor, and ESC con

Alex Spitzer 1 Dec 28, 2021
Data visualization electromagnetic spectrum

Datenvisualisierung-Elektromagnetischen-Spektrum Anhand des Moduls matplotlib sollen die Daten des elektromagnetischen Spektrums dargestellt werden. D

Pulsar 1 Sep 01, 2022
A guide for using Bootstrap 5 classes in Dash Bootstrap Components V1

dash-bootstrap-cheatsheet This handy interactive cheatsheet makes it easy to use the Bootstrap 5 classes with your Dash app made with the latest versi

10 Dec 22, 2022
Tweets your monthly GitHub Contributions as Wordle grid

Tweets your monthly GitHub Contributions as Wordle grid

Venu Vardhan Reddy Tekula 5 Feb 16, 2022
A simple python tool for explore your object detection dataset

A simple tool for explore your object detection dataset. The goal of this library is to provide simple and intuitive visualizations from your dataset and automatically find the best parameters for ge

GRADIANT - Centro Tecnolóxico de Telecomunicacións de Galicia 142 Dec 25, 2022
Statistical data visualization using matplotlib

seaborn: statistical data visualization Seaborn is a Python visualization library based on matplotlib. It provides a high-level interface for drawing

Michael Waskom 10.2k Dec 30, 2022
Streamlit-template - A streamlit app template based on streamlit-option-menu

streamlit-template A streamlit app template for geospatial applications based on

Qiusheng Wu 41 Dec 10, 2022
A comprehensive tutorial for plotting focal mechanism

Focal_Mechanisms_Demo A comprehensive tutorial for plotting focal mechanism "beach-balls" using the PyGMT package for Python. (Resulting map of this d

3 Dec 13, 2022
Example Code Notebooks for Data Visualization in Python

This repository contains sample code scripts for creating awesome data visualizations from scratch using different python libraries (such as matplotli

Javed Ali 27 Jan 04, 2023