Evolution Strategies in PyTorch

Overview

Evolution Strategies

This is a PyTorch implementation of Evolution Strategies.

Requirements

Python 3.5, PyTorch >= 0.2.0, numpy, gym, universe, cv2

What is this? (For non-ML people)

A large class of problems in AI can be described as "Markov Decision Processes," in which there is an agent taking actions in an environment, and receiving reward, with the goal being to maximize reward. This is a very general framework, which can be applied to many tasks, from learning how to play video games to robotic control. For the past few decades, most people used Reinforcement Learning -- that is, learning from trial and error -- to solve these problems. In particular, there was an extension of the backpropagation algorithm from Supervised Learning, called the Policy Gradient, which could train neural networks to solve these problems. Recently, OpenAI had shown that black-box optimization of neural network parameters (that is, not using the Policy Gradient or even Reinforcement Learning) can achieve similar results to state of the art Reinforcement Learning algorithms, and can be parallelized much more efficiently. This repo is an implementation of that black-box optimization algorithm.

Usage

There are two neural networks provided in model.py, a small neural network meant for simple tasks with discrete observations and actions, and a larger Convnet-LSTM meant for Atari games.

Run python3 main.py --help to see all of the options and hyperparameters available to you.

Typical usage would be:

python3 main.py --small-net --env-name CartPole-v1

which will run the small network on CartPole, printing performance on every training batch. Default hyperparameters should be able to solve CartPole fairly quickly.

python3 main.py --small-net --env-name CartPole-v1 --test --restore path_to_checkpoint

which will render the environment and the performance of the agent saved in the checkpoint. Checkpoints are saved once per gradient update in training, always overwriting the old file.

python3 main.py --env-name PongDeterministic-v4 --n 10 --lr 0.01 --useAdam

which will train on Pong and produce a learning curve similar to this one:

Learning curve

This graph was produced after approximately 24 hours of training on a 12-core computer. I would expect that a more thorough hyperparameter search, and more importantly a larger batch size, would allow the network to solve the environment.

Deviations from the paper

  • I have not yet tried virtual batch normalization, but instead use the selu nonlinearity, which serves the same purpose but at a significantly reduced computational overhead. ES appears to be training on Pong quite well even with relatively small batch sizes and selu.

  • I did not pass rewards between workers, but rather sent them all to one master worker which took a gradient step and sent the new models back to the workers. If you have more cores than your batch size, OpenAI's method is probably more efficient, but if your batch size is larger than the number of cores, I think my method would be better.

  • I do not adaptively change the max episode length as is recommended in the paper, although it is provided as an option. The reasoning being that doing so is most helpful when you are running many cores in parallel, whereas I was using at most 12. Moreover, capping the episode length can severely cripple the performance of the algorithm if reward is correlated with episode length, as we cannot learn from highly-performing perturbations until most of the workers catch up (and they might not for a long time).

Tips

  • If you increase the batch size, n, you should increase the learning rate as well.

  • Feel free to stop training when you see that the unperturbed model is consistently solving the environment, even if the perturbed models are not.

  • During training you probably want to look at the rank of the unperturbed model within the population of perturbed models. Ideally some perturbation is performing better than your unperturbed model (if this doesn't happen, you probably won't learn anything useful). This requires 1 extra rollout per gradient step, but as this rollout can be computed in parallel with the training rollouts, this does not add to training time. It does, however, give us access to one less CPU core.

  • Sigma is a tricky hyperparameter to get right -- higher values of sigma will correspond to less variance in the gradient estimate, but will be more biased. At the same time, sigma is controlling the variance of our perturbations, so if we need a more varied population, it should be increased. It might be possible to adaptively change sigma based on the rank of the unperturbed model mentioned in the tip above. I tried a few simple heuristics based on this and found no significant performance increase, but it might be possible to do this more intelligently.

  • I found, as OpenAI did in their paper, that performance on Atari increased as I increased the size of the neural net.

Your code is making my computer slow help

Short answer: decrease the batch size to the number of cores in your computer, and decrease the learning rate as well. This will most likely hurt the performance of the algorithm.

Long answer: If you want large batch sizes while also keeping the number of spawned threads down, I have provided an old version in the slow_version branch which allows you to do multiple rollouts per thread, per gradient step. This code is not supported, however, and it is not recommended that you use it.

Contributions

Please feel free to make Github issues or send pull requests.

License

MIT

Owner
Andrew Gambardella
Machine Learning DPhil (PhD) student at University of Oxford
Andrew Gambardella
Transformers based fully on MLPs

Awesome MLP-based Transformers papers An up-to-date list of Transformers based fully on MLPs without attention! Why this repo? After transformers and

Fawaz Sammani 35 Dec 30, 2022
Voice control for Garry's Mod

WIP: Talonvoice GMod integrations Very work in progress voice control demo for Garry's Mod. HOWTO Install https://talonvoice.com/ Press https://i.imgu

Meta Construct 5 Nov 15, 2022
Deeper DCGAN with AE stabilization

AEGeAN Deeper DCGAN with AE stabilization Parallel training of generative adversarial network as an autoencoder with dedicated losses for each stage.

Tyler Kvochick 36 Feb 17, 2022
Code for our NeurIPS 2021 paper 'Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation'

Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation (NeurIPS 2021) Code for our NeurIPS 2021 paper 'Exploiting the Intri

Shiqi Yang 53 Dec 25, 2022
Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation

Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation Paper Multi-Target Adversarial Frameworks for Domain Adaptation in

Valeo.ai 20 Jun 21, 2022
The story of Chicken for Club Bing

Chicken Story tl;dr: The time when Microsoft banned my entire country for cheating at Club Bing. (A lot of the details are from memory so I've recreat

Eyal 142 May 16, 2022
Code and data of the Fine-Grained R2R Dataset proposed in paper Sub-Instruction Aware Vision-and-Language Navigation

Fine-Grained R2R Code and data of the Fine-Grained R2R Dataset proposed in the EMNLP2020 paper Sub-Instruction Aware Vision-and-Language Navigation. C

YicongHong 34 Nov 15, 2022
This repository contains the code for the paper ``Identifiable VAEs via Sparse Decoding''.

Sparse VAE This repository contains the code for the paper ``Identifiable VAEs via Sparse Decoding''. Data Sources The datasets used in this paper wer

Gemma Moran 17 Dec 12, 2022
[CVPR 2022 Oral] Rethinking Minimal Sufficient Representation in Contrastive Learning

Rethinking Minimal Sufficient Representation in Contrastive Learning PyTorch implementation of Rethinking Minimal Sufficient Representation in Contras

36 Nov 23, 2022
[AAAI 2021] EMLight: Lighting Estimation via Spherical Distribution Approximation and [ICCV 2021] Sparse Needlets for Lighting Estimation with Spherical Transport Loss

EMLight: Lighting Estimation via Spherical Distribution Approximation (AAAI 2021) Update 12/2021: We release our Virtual Object Relighting (VOR) Datas

Fangneng Zhan 144 Jan 06, 2023
EfficientDet (Scalable and Efficient Object Detection) implementation in Keras and Tensorflow

EfficientDet This is an implementation of EfficientDet for object detection on Keras and Tensorflow. The project is based on the official implementati

1.3k Dec 19, 2022
hySLAM is a hybrid SLAM/SfM system designed for mapping

HySLAM Overview hySLAM is a hybrid SLAM/SfM system designed for mapping. The system is based on ORB-SLAM2 with some modifications and refactoring. Raú

Brian Hopkinson 15 Oct 10, 2022
Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation

TVT Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation Datasets: Digit: MNIST, SVHN, USPS Object: Office, Office-Home, Vi

37 Dec 15, 2022
A Traffic Sign Recognition Project which can help the driver recognise the signs via text as well as audio. Can be used at Night also.

Traffic-Sign-Recognition In this report, we propose a Convolutional Neural Network(CNN) for traffic sign classification that achieves outstanding perf

Mini Project 64 Nov 19, 2022
Tracking Progress in Question Answering over Knowledge Graphs

Tracking Progress in Question Answering over Knowledge Graphs Table of contents Question Answering Systems with Descriptions The QA Systems Table cont

Knowledge Graph Question Answering 47 Jan 02, 2023
LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models

LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models. Developers can reproduce these SOTA methods and

TuZheng 405 Jan 04, 2023
Official Code for "Non-deep Networks"

Non-deep Networks arXiv:2110.07641 Ankit Goyal, Alexey Bochkovskiy, Jia Deng, Vladlen Koltun Overview: Depth is the hallmark of DNNs. But more depth m

Ankit Goyal 567 Dec 12, 2022
Parameter-ensemble-differential-evolution - Shows how to do parameter ensembling using differential evolution.

Ensembling parameters with differential evolution This repository shows how to ensemble parameters of two trained neural networks using differential e

Sayak Paul 9 May 04, 2022
The Illinois repository for Climatehack (https://climatehack.ai/). We won 1st place!

Climatehack This is the repository for Illinois's Climatehack Team. We earned first place on the leaderboard with a final score of 0.87992. An overvie

Jatin Mathur 20 Jun 09, 2022
Source code for CVPR 2021 paper "Riggable 3D Face Reconstruction via In-Network Optimization"

Riggable 3D Face Reconstruction via In-Network Optimization Source code for CVPR 2021 paper "Riggable 3D Face Reconstruction via In-Network Optimizati

130 Jan 02, 2023