This is the official implementation of our proposed SwinMR

Overview

SwinMR

This is the official implementation of our proposed SwinMR:

Swin Transformer for Fast MRI

Please cite:

@article{huang2022swin,
      title={Swin Transformer for Fast MRI}, 
      author={Jiahao Huang and Yingying Fang and Yinzhe Wu and Huanjun Wu and Zhifan Gao and Yang Li and Javier Del Ser and Jun Xia and Guang Yang},
      year={2022},
      eprint={2201.03230},
      archivePrefix={arXiv},
      primaryClass={eess.IV}
}

Overview_of_SwinMR

Highlight

  • A novel Swin transformer-based model for fast MRI reconstruction was proposed.
  • A multi-channel loss with sensitivity maps was proposed for reserving more details.
  • Comparison studies were performed to validate the robustness of our SwinMR.
  • A pre-trained segmentation network was used to validate the reconstruction quality.

Requirements

matplotlib==3.3.4

opencv-python==4.5.3.56

Pillow==8.3.2

pytorch-fid==0.2.0

scikit-image==0.17.2

scipy==1.5.4

tensorboardX==2.4

timm==0.4.12

torch==1.9.0

torchvision==0.10.0

Training and Testing

Use different options (json files) to train different networks.

Calgary Campinas multi-channel dataset (CC)

To train SwinMR (PI) on CC:

python main_train_swinmr.py --opt ./options/train_swinmr_pi.json

To test SwinMR (PI) on CC:

python main_train_swinmr.py --opt ./options/train_swinmr_npi.json

To train SwinMR (nPI) on CC:

python main_test_swinmr.py --opt ./options/test/test_swinmr_pi.json

To test SwinMR (nPI) on CC:

python main_test_swinmr.py --opt ./options/test/test_swinmr_npi.json

Multi-modal Brain Tumour Segmentation Challenge 2017 (BraTS17)

To train SwinMR (nPI) on BraTS17:

python main_train_swinmr.py --opt ./options/train_swinmr_brats17.json

To test SwinMR (nPI) on BraTS17:

python main_test_swinmr_BraTS17.py --opt ./options/test/test_swinmr_brats17.json

This repository is based on:

SwinIR: Image Restoration Using Swin Transformer (code and paper);

Swin Transformer: Hierarchical Vision Transformer using Shifted Windows (code and paper).

Owner
A Yang Lab (led by Dr Guang Yang)
The AYL (A Yang Lab) at Imperial College London is led by Dr Guang Yang, and focuses on the development of AI-powered applications for digital healthcare.
A Yang Lab (led by Dr Guang Yang)
[IROS'21] SurRoL: An Open-source Reinforcement Learning Centered and dVRK Compatible Platform for Surgical Robot Learning

SurRoL IROS 2021 SurRoL: An Open-source Reinforcement Learning Centered and dVRK Compatible Platform for Surgical Robot Learning Features dVRK compati

<a href=[email protected]"> 55 Jan 03, 2023
Human motion synthesis using Unity3D

Human motion synthesis using Unity3D Prerequisite: Software: amc2bvh.exe, Unity 2017, Blender. Unity: RockVR (Video Capture), scenes, character models

Hao Xu 9 Jun 01, 2022
Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective

Does-MAML-Only-Work-via-Feature-Re-use-A-Data-Set-Centric-Perspective Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective Installin

2 Nov 07, 2022
LocUNet is a deep learning method to localize a UE based solely on the reported signal strengths from a set of BSs.

LocUNet LocUNet is a deep learning method to localize a UE based solely on the reported signal strengths from a set of BSs. The method utilizes accura

4 Oct 05, 2022
Codes and Data Processing Files for our paper.

Code Scripts and Processing Files for EEG Sleep Staging Paper 1. Folder Tree ./src_preprocess (data preprocessing files for SHHS and Sleep EDF) sleepE

Chaoqi Yang 18 Dec 12, 2022
Hierarchical Uniform Manifold Approximation and Projection

HUMAP Hierarchical Manifold Approximation and Projection (HUMAP) is a technique based on UMAP for hierarchical non-linear dimensionality reduction. HU

Wilson Estécio Marcílio Júnior 160 Jan 06, 2023
Global Filter Networks for Image Classification

Global Filter Networks for Image Classification Created by Yongming Rao, Wenliang Zhao, Zheng Zhu, Jiwen Lu, Jie Zhou This repository contains PyTorch

Yongming Rao 273 Dec 26, 2022
Python implementation of the multistate Bennett acceptance ratio (MBAR)

pymbar Python implementation of the multistate Bennett acceptance ratio (MBAR) method for estimating expectations and free energy differences from equ

Chodera lab // Memorial Sloan Kettering Cancer Center 169 Dec 02, 2022
This repository contains the exercises and its solution contained in the book "An Introduction to Statistical Learning" in python.

An-Introduction-to-Statistical-Learning This repository contains the exercises and its solution contained in the book An Introduction to Statistical L

2.1k Jan 02, 2023
Image Super-Resolution by Neural Texture Transfer

SRNTT: Image Super-Resolution by Neural Texture Transfer Tensorflow implementation of the paper Image Super-Resolution by Neural Texture Transfer acce

Zhifei Zhang 413 Nov 30, 2022
Churn prediction

Churn-prediction Churn-prediction Data preprocessing:: Label encoder is used to normalize the categorical variable Data Transformation:: For each data

1 Sep 28, 2022
Multilingual Image Captioning

Multilingual Image Captioning Authors: Bhavitvya Malik, Gunjan Chhablani Demo Link: https://huggingface.co/spaces/flax-community/multilingual-image-ca

Gunjan Chhablani 32 Nov 25, 2022
tensorflow implementation of 'YOLO : Real-Time Object Detection'

YOLO_tensorflow (Version 0.3, Last updated :2017.02.21) 1.Introduction This is tensorflow implementation of the YOLO:Real-Time Object Detection It can

Jinyoung Choi 1.7k Nov 21, 2022
[ICML 2021, Long Talk] Delving into Deep Imbalanced Regression

Delving into Deep Imbalanced Regression This repository contains the implementation code for paper: Delving into Deep Imbalanced Regression Yuzhe Yang

Yuzhe Yang 568 Dec 30, 2022
NCNN implementation of Real-ESRGAN. Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

NCNN implementation of Real-ESRGAN. Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Xintao 593 Jan 03, 2023
Tiny Object Detection in Aerial Images.

AI-TOD AI-TOD is a dataset for tiny object detection in aerial images. [Paper] [Dataset] Description AI-TOD comes with 700,621 object instances for ei

jwwangchn 116 Dec 30, 2022
The code of "Dependency Learning for Legal Judgment Prediction with a Unified Text-to-Text Transformer".

Code data_preprocess.py: preprocess data for Dependent-T5. parameters.py: define parameters of Dependent-T5. train_tools.py: traning and evaluation co

1 Apr 21, 2022
A library for answering questions using data you cannot see

A library for computing on data you do not own and cannot see PySyft is a Python library for secure and private Deep Learning. PySyft decouples privat

OpenMined 8.5k Jan 02, 2023
HyperCube: Implicit Field Representations of Voxelized 3D Models

HyperCube: Implicit Field Representations of Voxelized 3D Models Authors: Magdalena Proszewska, Marcin Mazur, Tomasz Trzcinski, Przemysław Spurek [Pap

Magdalena Proszewska 3 Mar 09, 2022
Lux AI environment interface for RLlib multi-agents

Lux AI interface to RLlib MultiAgentsEnv For Lux AI Season 1 Kaggle competition. LuxAI repo RLlib-multiagents docs Kaggle environments repo Please let

Jaime 12 Nov 07, 2022