Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works

Overview

GDAP

Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works

Environment

  • Python (verified: v3.8)
  • CUDA (verified: v11.1)
  • Packages (see requirements.txt)

Usage

Preprocessing

We follow dygiepp for data preprocessing.

  • text2et: Event Type Detection
  • ettext2tri: Trigger Extraction
  • etrttext2role: Argument Extraction
# data processed by dyieapp
data/text2target/dyiepp_ace1005_ettext2tri_subtype
├── event.schema 
├── test.json
├── train.json
└── val.json

# data processed by  data_convert.convert_text_to_target
data/text2target/dyiepp_ace1005_ettext2tri_subtype
├── event.schema
├── test.json
├── train.json
└── val.json

Useful commands:

python -m data_convert.convert_text_to_target # data/raw_data -> data/text2target
python convert_dyiepp_to_sentence.py data/raw_data/dyiepp_ace2005 # doc -> sentence, used in evaluation

Training

Relevant scripts:

  • run_seq2seq.py: Python code entry, modified from the transformers/examples/seq2seq/run_seq2seq.py
  • run_seq2seq_span.bash: Model training script logging to the log file.

Example (see the above two files for more details):

# ace05 event type detection t5-base, the metric_format use eval_trigger-F1 
bash run_seq2seq_span.bash --data=dyiepp_ace2005_text2et_subtype --model=t5-base --format=et --metric_format=eval_trigger-F1

# ace05 tri extraction t5-base
bash run_seq2seq_span.bash --data=dyiepp_ace2005_ettext2tri_subtype --model=t5-base --format=tri --metric_format=eval_trigger-F1

# ace05 argument extraction t5-base
bash run_seq2seq_span.bash --data=dyiepp_ace2005_etrttext2role_subtype --model=t5-base --format=role --metric_format=eval_role-F1

Trained models are saved in the models/ folder.

Evaluation

  • run_tri_predict.bash: trigger extraction evaluation and inference script.
  • run_arg_predict.bash: argument extraction evaluation and inference script.

Todo

We aim to expand the codebase for a wider range of tasks, including

  • Name Entity Recognition
  • Keyword Generation
  • Event Relation Identification

If you find this repo helpful...

Please give us a and cite our paper as

@misc{si2021-GDAP,
      title={Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works}, 
      author={Jinghui Si and Xutan Peng and Chen Li and Haotian Xu and Jianxin Li},
      year={2021},
      eprint={2110.04525},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

This project borrows code from Text2Event

Code for "My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack" paper

Myo Keylogging This is the source code for our paper My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack by Matthias Ga

Secure Mobile Networking Lab 7 Jan 03, 2023
[NeurIPS 2021] Introspective Distillation for Robust Question Answering

Introspective Distillation (IntroD) This repository is the Pytorch implementation of our paper "Introspective Distillation for Robust Question Answeri

Yulei Niu 13 Jul 26, 2022
This is the repository for CVPR2021 Dynamic Metric Learning: Towards a Scalable Metric Space to Accommodate Multiple Semantic Scales

Intro This is the repository for CVPR2021 Dynamic Metric Learning: Towards a Scalable Metric Space to Accommodate Multiple Semantic Scales Vehicle Sam

39 Jul 21, 2022
Tools for computational pathology

A toolkit for computational pathology and machine learning. View documentation Please cite our paper Installation There are several ways to install Pa

254 Dec 12, 2022
[Arxiv preprint] Causality-inspired Single-source Domain Generalization for Medical Image Segmentation (code&data-processing pipeline)

Causality-inspired Single-source Domain Generalization for Medical Image Segmentation Arxiv preprint Repository under construction. Might still be bug

Cheng 31 Dec 27, 2022
Learning to Stylize Novel Views

Learning to Stylize Novel Views [Project] [Paper] Contact: Hsin-Ping Huang ([ema

34 Nov 27, 2022
Preprossing-loan-data-with-NumPy - In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United States.

Preprossing-loan-data-with-NumPy In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United

Dhawal Chitnavis 2 Jan 03, 2022
Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore

[AI6122] Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instructor of this course

HT. Li 5 Sep 12, 2022
PyTorch Implementation of SSTNs for hyperspectral image classifications from the IEEE T-GRS paper "Spectral-Spatial Transformer Network for Hyperspectral Image Classification: A FAS Framework."

PyTorch Implementation of SSTN for Hyperspectral Image Classification Paper links: SSTN published on IEEE T-GRS. Also, you can directly find the imple

Zilong Zhong 54 Dec 19, 2022
Official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer"

[AAAI2022] UCTransNet This repo is the official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspectiv

Haonan Wang 199 Jan 03, 2023
Scenic: A Jax Library for Computer Vision and Beyond

Scenic Scenic is a codebase with a focus on research around attention-based models for computer vision. Scenic has been successfully used to develop c

Google Research 1.6k Dec 27, 2022
[CVPR2021] The source code for our paper 《Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning》.

TBE The source code for our paper "Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Le

Jinpeng Wang 150 Dec 28, 2022
Attention mechanism with MNIST dataset

[TensorFlow] Attention mechanism with MNIST dataset Usage $ python run.py Result Training Loss graph. Test Each figure shows input digit, attention ma

YeongHyeon Park 12 Jun 10, 2022
[IJCAI-2021] A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation"

DataFree A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation" Authors: Gongfa

ZJU-VIPA 47 Jan 09, 2023
Python framework for Stochastic Differential Equations modeling

SDElearn: a Python package for SDE modeling This package implements functionalities for working with Stochastic Differential Equations models (SDEs fo

4 May 10, 2022
Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation

Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation This is the official repository for our paper Neural Reprojection Error

Hugo Germain 78 Dec 01, 2022
Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX.

snc4onnx Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools 1.

Katsuya Hyodo 8 Oct 13, 2022
PPO Lagrangian in JAX

PPO Lagrangian in JAX This repository implements PPO in JAX. Implementation is tested on the safety-gym benchmark. Usage Install dependencies using th

Karush Suri 2 Sep 14, 2022
RGB-stacking 🛑 🟩 🔷 for robotic manipulation

RGB-stacking 🛑 🟩 🔷 for robotic manipulation BLOG | PAPER | VIDEO Beyond Pick-and-Place: Tackling Robotic Stacking of Diverse Shapes, Alex X. Lee*,

DeepMind 95 Dec 23, 2022
This is the code of using DQN to play Sekiro .

Update for using DQN to play sekiro 2021.2.2(English Version) This is the code of using DQN to play Sekiro . I am very glad to tell that I have writen

144 Dec 25, 2022