Code accompanying the paper "How Tight Can PAC-Bayes be in the Small Data Regime?"

Overview

How Tight Can PAC-Bayes be in the Small Data Regime?

This is the code to reproduce all experiments for the following paper:

@inproceedings{Foong:2021:How_Tight_Can_PAC-Bayes_Be,
    title = {How Tight Can {PAC}-{Bayes} Be in the Small Data Regime?},
    year = {2021},
    author = {Andrew Y. K. Foong and Wessel P. Bruinsma and David R. Burt and Richard E. Turner},
    booktitle = {Advances in Neural Information Processing Systems},
    volume = {35},
    eprint = {https://arxiv.org/abs/2106.03542},
}

Every experiment creates a folder in _experiments. The names of the files in those folders should be self-explanatory.

Installation

First, create and activate a virtual environment for Python 3.8.

virtualenv venv -p python3.8 
source venv/bin/activate

Then install an appropriate GPU-accelerated version of PyTorch.

Finally, install the requirements for the project.

pip install -e . 

You should now be able to run the below commands.

Generating Datasets

In order to generate the synthetic 1D datasets used, run these commands from inside classification_1d:

python gen_data.py --class_scheme balanced --num_context 30 --name 30-context --num_train_batches 5000 --num_test_batches 64
python gen_data.py --class_scheme balanced --num_context 60 --name 60-context --num_train_batches 5000 --num_test_batches 64

The generated datasets will be in pacbayes/_data_caches

Theory Experiments

See Figure 2 in Section 3 and Appendix G.

python theory_experiments.py --setting det1-1
python theory_experiments.py --setting det1-2
python theory_experiments.py --setting det2-1
python theory_experiments.py --setting det2-1

python theory_experiments.py --setting stoch1
python theory_experiments.py --setting stoch2
python theory_experiments.py --setting stoch3

python theory_experiments.py --setting random --random-seed 1 --random-better-bound maurer
python theory_experiments.py --setting random --random-seed 6 --random-better-bound catoni

GNP Classification Experiments

See Figure 3 and 4 in Section 4 and Appendices I and J. The numbers from the graphs can be found in eval_metrics_no_post_opt.txt (without post optimisation) eval_metrics_post_opt.txt (with post optimisation).

MODEL_NONDDP=maurer MODEL_DDP=maurer-ddp NUM_CONTEXT=30 ./run_GNP_prop_024.sh
MODEL_NONDDP=maurer MODEL_DDP=maurer-ddp NUM_CONTEXT=30 ./run_GNP_prop_68.sh
MODEL_NONDDP=catoni MODEL_DDP=catoni-ddp NUM_CONTEXT=30 ./run_GNP_prop_024.sh
MODEL_NONDDP=catoni MODEL_DDP=catoni-ddp NUM_CONTEXT=30 ./run_GNP_prop_68.sh
MODEL_NONDDP=convex-nonseparable MODEL_DDP=convex-nonseparable-ddp NUM_CONTEXT=30 ./run_GNP_prop_024.sh
MODEL_NONDDP=convex-nonseparable MODEL_DDP=convex-nonseparable-ddp NUM_CONTEXT=30 ./run_GNP_prop_68.sh
MODEL_NONDDP=kl-val MODEL_DDP=kl-val NUM_CONTEXT=30 ./run_GNP_prop_024.sh
MODEL_NONDDP=kl-val MODEL_DDP=kl-val NUM_CONTEXT=30 ./run_GNP_prop_68.sh
MODEL_NONDDP=maurer-optimistic MODEL_DDP=maurer-optimistic-ddp NUM_CONTEXT=30 ./run_GNP_prop_024.sh
MODEL_NONDDP=maurer-optimistic MODEL_DDP=maurer-optimistic-ddp NUM_CONTEXT=30 ./run_GNP_prop_68.sh
MODEL_NONDDP=maurer-inv MODEL_DDP=maurer-inv-ddp NUM_CONTEXT=30 ./run_GNP_prop_024.sh
MODEL_NONDDP=maurer-inv MODEL_DDP=maurer-inv-ddp NUM_CONTEXT=30 ./run_GNP_prop_68.sh
MODEL_NONDDP=maurer-inv-optimistic MODEL_DDP=maurer-inv-optimistic-ddp NUM_CONTEXT=30 ./run_GNP_prop_024.sh
MODEL_NONDDP=maurer-inv-optimistic MODEL_DDP=maurer-inv-optimistic-ddp NUM_CONTEXT=30 ./run_GNP_prop_68.sh

MODEL_NONDDP=maurer MODEL_DDP=maurer-ddp NUM_CONTEXT=60 ./run_GNP_prop_024.sh
MODEL_NONDDP=maurer MODEL_DDP=maurer-ddp NUM_CONTEXT=60 ./run_GNP_prop_68.sh
MODEL_NONDDP=catoni MODEL_DDP=catoni-ddp NUM_CONTEXT=60 ./run_GNP_prop_024.sh
MODEL_NONDDP=catoni MODEL_DDP=catoni-ddp NUM_CONTEXT=60 ./run_GNP_prop_68.sh
MODEL_NONDDP=convex-nonseparable MODEL_DDP=convex-nonseparable-ddp NUM_CONTEXT=60 ./run_GNP_prop_024.sh
MODEL_NONDDP=convex-nonseparable MODEL_DDP=convex-nonseparable-ddp NUM_CONTEXT=60 ./run_GNP_prop_68.sh
MODEL_NONDDP=kl-val MODEL_DDP=kl-val NUM_CONTEXT=60 ./run_GNP_prop_024.sh
MODEL_NONDDP=kl-val MODEL_DDP=kl-val NUM_CONTEXT=60 ./run_GNP_prop_68.sh
MODEL_NONDDP=maurer-optimistic MODEL_DDP=maurer-optimistic-ddp NUM_CONTEXT=60 ./run_GNP_prop_024.sh
MODEL_NONDDP=maurer-optimistic MODEL_DDP=maurer-optimistic-ddp NUM_CONTEXT=60 ./run_GNP_prop_68.sh
MODEL_NONDDP=maurer-inv MODEL_DDP=maurer-inv-ddp NUM_CONTEXT=60 ./run_GNP_prop_024.sh
MODEL_NONDDP=maurer-inv MODEL_DDP=maurer-inv-ddp NUM_CONTEXT=60 ./run_GNP_prop_68.sh
MODEL_NONDDP=maurer-inv-optimistic MODEL_DDP=maurer-inv-optimistic-ddp NUM_CONTEXT=60 ./run_GNP_prop_024.sh
MODEL_NONDDP=maurer-inv-optimistic MODEL_DDP=maurer-inv-optimistic-ddp NUM_CONTEXT=60 ./run_GNP_prop_68.sh

MLP Classification Experiments

See Appendix J. The numbers from the graphs can be found in eval_metrics_no_post_opt.txt (without post optimisation) eval_metrics_post_opt.txt (with post optimisation).

MODEL_NONDDP=catoni MODEL_DDP=catoni-ddp NUM_CONTEXT=30 ./run_MLP.sh
MODEL_NONDDP=kl-val MODEL_DDP=kl-val NUM_CONTEXT=30 ./run_MLP.sh

MODEL_NONDDP=catoni MODEL_DDP=catoni-ddp NUM_CONTEXT=60 ./run_MLP.sh
MODEL_NONDDP=kl-val MODEL_DDP=kl-val NUM_CONTEXT=60 ./run_MLP.sh
A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning

CLEVR Dataset Generation This is the code used to generate the CLEVR dataset as described in the paper: CLEVR: A Diagnostic Dataset for Compositional

Facebook Research 503 Jan 04, 2023
project page for VinVL

VinVL: Revisiting Visual Representations in Vision-Language Models Updates 02/28/2021: Project page built. Introduction This repository is the project

308 Jan 09, 2023
Smart edu-autobooking - Johnson @ DMI-UNICT study room self-booking system

smart_edu-autobooking Sistema di autoprenotazione per l'aula studio [email protected]

Davide Carnemolla 17 Jun 20, 2022
This repository contains the code for: RerrFact model for SciVer shared task

RerrFact This repository contains the code for: RerrFact model for SciVer shared task. Setup for Inference 1. Download SciFact database Download the S

Ashish Rana 1 May 22, 2022
This is the official implement of paper "ActionCLIP: A New Paradigm for Action Recognition"

This is an official pytorch implementation of ActionCLIP: A New Paradigm for Video Action Recognition [arXiv] Overview Content Prerequisites Data Prep

268 Jan 09, 2023
Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Google 89 Dec 22, 2022
Codebase for Inducing Causal Structure for Interpretable Neural Networks

Interchange Intervention Training (IIT) Codebase for Inducing Causal Structure for Interpretable Neural Networks Release Notes 12/01/2021: Code and Pa

Zen 6 Oct 10, 2022
TraND: Transferable Neighborhood Discovery for Unsupervised Cross-domain Gait Recognition.

TraND This is the code for the paper "Jinkai Zheng, Xinchen Liu, Chenggang Yan, Jiyong Zhang, Wu Liu, Xiaoping Zhang and Tao Mei: TraND: Transferable

Jinkai Zheng 32 Apr 04, 2022
Pytorch implement of 'Unmixing based PAN guided fusion network for hyperspectral imagery'

Pgnet There's a improved version compared with the publication in Tgrs with the modification in the deduction of the PDIN block: https://arxiv.org/abs

5 Jul 01, 2022
Official Pytorch implementation of the paper "Action-Conditioned 3D Human Motion Synthesis with Transformer VAE", ICCV 2021

ACTOR Official Pytorch implementation of the paper "Action-Conditioned 3D Human Motion Synthesis with Transformer VAE", ICCV 2021. Please visit our we

Mathis Petrovich 248 Dec 23, 2022
The audio-video synchronization of MKV Container Format is exploited to achieve data hiding

The audio-video synchronization of MKV Container Format is exploited to achieve data hiding, where the hidden data can be utilized for various management purposes, including hyper-linking, annotation

Maxim Zaika 1 Nov 17, 2021
Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020

XDVioDet Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020. The proj

peng 64 Dec 12, 2022
Towards Boosting the Accuracy of Non-Latin Scene Text Recognition

Convolutional Recurrent Neural Network + CTCLoss | STAR-Net Code for paper "Towards Boosting the Accuracy of Non-Latin Scene Text Recognition" Depende

Sanjana Gunna 7 Aug 07, 2022
Minimalistic PyTorch training loop

Backbone for PyTorch training loop Will try to keep it minimalistic. pip install back from back import Bone Features Progress bar Checkpoints saving/l

Kashin 4 Jan 16, 2020
Diverse graph algorithms implemented using JGraphT library.

# 1. Installing Maven & Pandas First, please install Java (JDK11) and Python 3 if they are not already. Next, make sure that Maven (for importing J

See Woo Lee 3 Dec 17, 2022
Code for our ALiBi method for transformer language models.

Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation This repository contains the code and models for our paper Tra

Ofir Press 211 Dec 31, 2022
Official implementation for paper: Feature-Style Encoder for Style-Based GAN Inversion

Feature-Style Encoder for Style-Based GAN Inversion Official implementation for paper: Feature-Style Encoder for Style-Based GAN Inversion. Code will

InterDigital 63 Jan 03, 2023
Code base for NeurIPS 2021 publication titled Kernel Functional Optimisation (KFO)

KernelFunctionalOptimisation Code base for NeurIPS 2021 publication titled Kernel Functional Optimisation (KFO) We have conducted all our experiments

2 Jun 29, 2022
Project page for our ICCV 2021 paper "The Way to my Heart is through Contrastive Learning"

The Way to my Heart is through Contrastive Learning: Remote Photoplethysmography from Unlabelled Video This is the official project page of our ICCV 2

36 Jan 06, 2023
An self sufficient AI that crawls the web to learn how to generate art from keywords

Roxx-IO - The Smart Artist AI! TO DO / IDEAS Implement Web-Scraping Functionality Figure out a less annoying (and an off button for it) text to speech

Tatz 5 Mar 21, 2022