Super Tickets in Pre-Trained Language Models: From Model Compression to Improving Generalization (ACL 2021)

Overview

Structured Super Lottery Tickets in BERT

This repo contains our codes for the paper "Super Tickets in Pre-Trained Language Models: From Model Compression to Improving Generalization" (ACL 2021).


Getting Start

  1. python3.6
    Reference to download and install : https://www.python.org/downloads/release/python-360/
  2. install requirements
    > pip install -r requirements.txt

Data

  1. Download data
    sh download.sh
    Please refer to download GLUE dataset: https://gluebenchmark.com/
  2. Preprocess data
    > sh experiments/glue/prepro.sh
    For more data processing details, please refer to this repo.

Verifying Phase Transition Phenomenon

  1. Fine-tune a pre-trained BERT model with single task data, compute importance scores, and generate one-shot structured pruning masks at multiple sparsity levels. E.g., for MNLI, run

    ./scripts/train_mnli.sh GPUID
    
  2. Rewind and evaluate the winning, random, and losing tickets at multiple sparsity levels. E.g., for MNLI, run

    ./scripts/rewind_mnli.sh GPUID
    

You may try tasks with smaller sizes (e.g., SST, MRPC, RTE) to see a more pronounced phase transition.


Multi-task Learning (MTL) with Tickets Sharing

  1. Identify a set of super tickets for each individual task.

    • Identify winning tickets at multiple sparsity levels for each individual task. E.g., for MTDNN-base, run

      ./scripts/prepare_mtdnn_base.sh GPUID
      

      We recommend to use the same optimization settings, e.g., learning rate, optimizer and random seed, in both the ticket identification procedures and the MTL. We empirically observe that the super tickets perform better in MTL in such a case.

    • [Optional] For each individual task, identify a set of super tickets from the winning tickets at multiple sparsity levels. You can skip this step if you wish to directly use the set of super tickets identified by us. If you wish to identify super tickets on your own (This is recommended if you use a different optimization settings, e.g., learning rate, optimizer and random seed, from those in our scripts. These factors may affect the candidacy of super tickets.), we provide the template scripts

      ./scripts/rewind_mnli_winning.sh GPUID
      ./scripts/rewind_qnli_winning.sh GPUID
      ./scripts/rewind_qqp_winning.sh GPUID
      ./scripts/rewind_sst_winning.sh GPUID
      ./scripts/rewind_mrpc_winning.sh GPUID
      ./scripts/rewind_cola_winning.sh GPUID
      ./scripts/rewind_stsb_winning.sh GPUID
      ./scripts/rewind_rte_winning.sh GPUID
      

      These scripts rewind the winning tickets at multiple sparsity levels. You can manually identify the set of super tickets as the set of winning tickets that perform the best among all sparsity levels.

  2. Construct multi-task super tickets by aggregating the identified sets of super tickets of all tasks. E.g., to use the super tickets identified by us, run

    python construct_mtl_mask.py
    

    You can modify the script to use the super tickets identified by yourself.

  3. MTL with tickets sharing. Run

    ./scripts/train_mtdnn.sh GPUID
    

MTL Benchmark

MTL evaluation results on GLUE dev set averaged over 5 random seeds.

Model MNLI-m/mm (Acc) QNLI (Acc) QQP (Acc/F1) SST-2 (Acc) MRPC (Acc/F1) CoLA (Mcc) STS-B (P/S) RTE (Acc) Avg Score Avg Compression
MTDNN, base 84.6/84.2 90.5 90.6/87.4 92.2 80.6/86.2 54.0 86.2/86.4 79.0 82.4 100%
Tickets-Share, base 84.5/84.1 91.0 90.7/87.5 92.7 87.0/90.5 52.0 87.7/87.5 81.2 83.3 92.9%
MTDNN, large 86.5/86.0 92.2 91.2/88.1 93.5 85.2/89.4 56.2 87.2/86.9 83.0 84.4 100%
Tickets-Share, large 86.7/86.0 92.1 91.3/88.4 93.2 88.4/91.5 61.8 89.2/89.1 80.5 85.4 83.3%

Citation

@article{liang2021super,
  title={Super Tickets in Pre-Trained Language Models: From Model Compression to Improving Generalization},
  author={Liang, Chen and Zuo, Simiao and Chen, Minshuo and Jiang, Haoming and Liu, Xiaodong and He, Pengcheng and Zhao, Tuo and Chen, Weizhu},
  journal={arXiv preprint arXiv:2105.12002},
  year={2021}
}

@article{liu2020mtmtdnn,
  title={The Microsoft Toolkit of Multi-Task Deep Neural Networks for Natural Language Understanding},
  author={Liu, Xiaodong and Wang, Yu and Ji, Jianshu and Cheng, Hao and Zhu, Xueyun and Awa, Emmanuel and He, Pengcheng and Chen, Weizhu and Poon, Hoifung and Cao, Guihong and Jianfeng Gao},
  journal={arXiv preprint arXiv:2002.07972},
  year={2020}
}

Contact Information

For help or issues related to this package, please submit a GitHub issue. For personal questions related to this paper, please contact Chen Liang ([email protected]).

Owner
Chen Liang
Chen Liang
Official Pytorch implementation of Test-Agnostic Long-Tailed Recognition by Test-Time Aggregating Diverse Experts with Self-Supervision.

This repository is the official Pytorch implementation of Test-Agnostic Long-Tailed Recognition by Test-Time Aggregating Diverse Experts with Self-Supervision.

vanint 101 Dec 30, 2022
CoSENT、STS、SentenceBERT

CoSENT_Pytorch 比Sentence-BERT更有效的句向量方案

102 Dec 07, 2022
Enterprise Scale NLP with Hugging Face & SageMaker Workshop series

Workshop: Enterprise-Scale NLP with Hugging Face & Amazon SageMaker Earlier this year we announced a strategic collaboration with Amazon to make it ea

Philipp Schmid 161 Dec 16, 2022
Twitter-Sentiment-Analysis - Twitter sentiment analysis for india's top online retailers(2019 to 2022)

Twitter-Sentiment-Analysis Twitter sentiment analysis for india's top online retailers(2019 to 2022) Project Overview : Sentiment Analysis helps us to

Balaji R 1 Jan 01, 2022
Fastseq 基于ONNXRUNTIME的文本生成加速框架

Fastseq 基于ONNXRUNTIME的文本生成加速框架

Jun Gao 9 Nov 09, 2021
Code repository for "It's About Time: Analog clock Reading in the Wild"

it's about time Code repository for "It's About Time: Analog clock Reading in the Wild" Packages required: pytorch (used 1.9, any reasonable version s

52 Nov 10, 2022
Sequence Modeling with Structured State Spaces

Structured State Spaces for Sequence Modeling This repository provides implementations and experiments for the following papers. S4 Efficiently Modeli

HazyResearch 902 Jan 06, 2023
Arabic speech recognition, classification and text-to-speech.

klaam Arabic speech recognition, classification and text-to-speech using many advanced models like wave2vec and fastspeech2. This repository allows tr

ARBML 177 Dec 27, 2022
Code of paper: A Recurrent Vision-and-Language BERT for Navigation

Recurrent VLN-BERT Code of the Recurrent-VLN-BERT paper: A Recurrent Vision-and-Language BERT for Navigation Yicong Hong, Qi Wu, Yuankai Qi, Cristian

YicongHong 109 Dec 21, 2022
FedNLP: A Benchmarking Framework for Federated Learning in Natural Language Processing

FedNLP is a research-oriented benchmarking framework for advancing federated learning (FL) in natural language processing (NLP). It uses FedML repository as the git submodule. In other words, FedNLP

FedML-AI 216 Nov 27, 2022
This is the main repository of open-sourced speech technology by Huawei Noah's Ark Lab.

Speech-Backbones This is the main repository of open-sourced speech technology by Huawei Noah's Ark Lab. Grad-TTS Official implementation of the Grad-

HUAWEI Noah's Ark Lab 295 Jan 07, 2023
AudioCLIP Extending CLIP to Image, Text and Audio

AudioCLIP Extending CLIP to Image, Text and Audio This repository contains implementation of the models described in the paper arXiv:2106.13043. This

458 Jan 02, 2023
Implementaion of our ACL 2022 paper Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation

Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation This is the implementaion of our paper: Bridging the

hezw.tkcw 20 Dec 12, 2022
KoBERT - Korean BERT pre-trained cased (KoBERT)

KoBERT KoBERT Korean BERT pre-trained cased (KoBERT) Why'?' Training Environment Requirements How to install How to use Using with PyTorch Using with

SK T-Brain 1k Jan 02, 2023
A machine learning model for analyzing text for user sentiment and determine whether its a positive, neutral, or negative review.

Sentiment Analysis on Yelp's Dataset Author: Roberto Sanchez, Talent Path: D1 Group Docker Deployment: Deployment of this application can be found her

Roberto Sanchez 0 Aug 04, 2021
Scikit-learn style model finetuning for NLP

Scikit-learn style model finetuning for NLP Finetune is a library that allows users to leverage state-of-the-art pretrained NLP models for a wide vari

indico 665 Dec 17, 2022
Contains links to publicly available datasets for modeling health outcomes using speech and language.

speech-nlp-datasets Contains links to publicly available datasets for modeling various health outcomes using speech and language. Speech-based Corpora

Tuka Alhanai 77 Dec 07, 2022
RecipeReduce: Simplified Recipe Processing for Lazy Programmers

RecipeReduce This repo will help you figure out the amount of ingredients to buy for a certain number of meals with selected recipes. RecipeReduce Get

Qibin Chen 9 Apr 22, 2022
The code for two papers: Feedback Transformer and Expire-Span.

transformer-sequential This repo contains the code for two papers: Feedback Transformer Expire-Span The training code is structured for long sequentia

Meta Research 125 Dec 25, 2022
Search Git commits in natural language

NaLCoS - NAtural Language COmmit Search Search commit messages in your repository in natural language. NaLCoS (NAtural Language COmmit Search) is a co

Pushkar Patel 50 Mar 22, 2022