Defocus Map Estimation and Deblurring from a Single Dual-Pixel Image

Overview

Defocus Map Estimation and Deblurring from a Single Dual-Pixel Image

This repository is an implementation of the method described in the following paper:

Shumian Xin, Neal Wadhwa, Tianfan Xue, Jonathan T. Barron, Pratul P. Srinivasan, Jiawen Chen, Ioannis Gkioulekas, and Rahul Garg. "Defocus Map Estimation and Deblurring from a Single Dual-Pixel Image", ICCV 2021.

If you use our code or dataset, please cite our paper:

@article{Xin_2021_ICCV_dual_pixel,
    author    = {Xin, Shumian and Wadhwa, Neal and Xue, Tianfan and Barron, Jonathan T. and Srinivasan, Pratul P. and Chen, Jiawen and Gkioulekas, Ioannis and Garg, Rahul},
    title     = {Defocus Map Estimation and Deblurring From a Single Dual-Pixel Image},
    journal   = {IEEE/CVF International Conference on Computer Vision (ICCV)},
    year      = {2021}
}

Dataset

We captured a new dataset of 17 indoor and outdoor scenes using a Google Pixel 4 smartphone camera. Data can be found in ./DP_data_pixel_4. Google Pixel 4 camera provides dual-pixel (DP) images in the green channel. These DP images are 14-bit, with a black level of 1024. Please refer to this GitHub Repo for more details about Google Pixel's DP data.

We also provide calibrated blur kernels and vignetting patterns of our device in ./DP_data_pixel_4/calibration.

Code

Code implementation is in ./code. It is written in Python, with autograd package Jax. Note: When installing Jax, make sure to install with GPU support.

To reproduce results in the paper (in the paper, results are postprocessed for better visualization), run:

cd ./code; python ./run.py

Each optimization runs for 10,000 iterations with an Adam optimizer, and takes about 2 hours on an Nvidia Titan RTX GPU.

Code has been tested with:

  • Python 3.7.8
  • Jax 0.2.19
  • OpenCV 4.4.0

Note: To run the code on your own Google Pixel 4 data, please adjust the preprocessing step in ./code/util.py/load_data_and_calibration if needed, such that the input dual pixel images are normalized to the range of [0, 1].

Source code for GNN-LSPE (Graph Neural Networks with Learnable Structural and Positional Representations)

Graph Neural Networks with Learnable Structural and Positional Representations Source code for the paper "Graph Neural Networks with Learnable Structu

Vijay Prakash Dwivedi 180 Dec 22, 2022
⚡ H2G-Net for Semantic Segmentation of Histopathological Images

H2G-Net This repository contains the code relevant for the proposed design H2G-Net, which was introduced in the manuscript "Hybrid guiding: A multi-re

André Pedersen 8 Nov 24, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Dec 28, 2022
Neural Oblivious Decision Ensembles

Neural Oblivious Decision Ensembles A supplementary code for anonymous ICLR 2020 submission. What does it do? It learns deep ensembles of oblivious di

25 Sep 21, 2022
Contrastive Fact Verification

VitaminC This repository contains the dataset and models for the NAACL 2021 paper: Get Your Vitamin C! Robust Fact Verification with Contrastive Evide

47 Dec 19, 2022
For auto aligning, cropping, and scaling HR and LR images for training image based neural networks

ImgAlign For auto aligning, cropping, and scaling HR and LR images for training image based neural networks Usage Make sure OpenCV is installed, 'pip

15 Dec 04, 2022
Lux AI environment interface for RLlib multi-agents

Lux AI interface to RLlib MultiAgentsEnv For Lux AI Season 1 Kaggle competition. LuxAI repo RLlib-multiagents docs Kaggle environments repo Please let

Jaime 12 Nov 07, 2022
Official implementation for ICDAR 2021 paper "Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer"

Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer Description Convert offline handwritten mathematical expressi

Wenqi Zhao 87 Dec 27, 2022
SCNet: Learning Semantic Correspondence

SCNet Code Region matching code is contributed by Kai Han ([email protected]). Dense

Kai Han 34 Sep 06, 2022
World Models with TensorFlow 2

World Models This repo reproduces the original implementation of World Models. This implementation uses TensorFlow 2.2. Docker The easiest way to hand

Zac Wellmer 234 Nov 30, 2022
A PyTorch Implementation of "Watch Your Step: Learning Node Embeddings via Graph Attention" (NeurIPS 2018).

Attention Walk ⠀⠀ A PyTorch Implementation of Watch Your Step: Learning Node Embeddings via Graph Attention (NIPS 2018). Abstract Graph embedding meth

Benedek Rozemberczki 303 Dec 09, 2022
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Jiaxi Jiang 282 Jan 02, 2023
Supervised Contrastive Learning for Downstream Optimized Sequence Representations

SupCL-Seq 📖 Supervised Contrastive Learning for Downstream Optimized Sequence representations (SupCS-Seq) accepted to be published in EMNLP 2021, ext

Hooman Sedghamiz 18 Oct 21, 2022
Deeper DCGAN with AE stabilization

AEGeAN Deeper DCGAN with AE stabilization Parallel training of generative adversarial network as an autoencoder with dedicated losses for each stage.

Tyler Kvochick 36 Feb 17, 2022
WatermarkRemoval-WDNet-WACV2021

WatermarkRemoval-WDNet-WACV2021 Thank you for your attention. Citation Please cite the related works in your publications if it helps your research: @

LUYI 63 Dec 05, 2022
Like Dirt-Samples, but cleaned up

Clean-Samples Like Dirt-Samples, but cleaned up, with clear provenance and license info (generally a permissive creative commons licence but check the

TidalCycles 39 Nov 30, 2022
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022
Tensorflow 2.x implementation of Vision-Transformer model

Vision Transformer Unofficial Tensorflow 2.x implementation of the Transformer based Image Classification model proposed by the paper AN IMAGE IS WORT

Soumik Rakshit 16 Jul 20, 2022
Official repository for Few-shot Image Generation via Cross-domain Correspondence (CVPR '21)

Few-shot Image Generation via Cross-domain Correspondence Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A. Efros, Yong Jae Lee, Eli Shechtman, Richard Zh

Utkarsh Ojha 251 Dec 11, 2022
auto-tuning momentum SGD optimizer

YellowFin YellowFin is an auto-tuning optimizer based on momentum SGD which requires no manual specification of learning rate and momentum. It measure

Jian Zhang 288 Nov 19, 2022