code for Image Manipulation Detection by Multi-View Multi-Scale Supervision

Related tags

Deep LearningMVSS-Net
Overview

MVSS-Net

Code and models for ICCV 2021 paper: Image Manipulation Detection by Multi-View Multi-Scale Supervision

Image text

Update

To Be Done.

  • 21.12.17, Something new: MVSS-Net++

We now have an improved version of MVSS-Net, denoted as MVSS-Net++. Check here.

Environment

  • Ubuntu 16.04.6 LTS
  • Python 3.6
  • cuda10.1+cudnn7.6.3

Requirements

Usage

Dataset

An example of the dataset index file is given as data/CASIAv1plus.txt, where each line contains:

img_path mask_path label
  • 0 represents the authentic and 1 represents the manipulated.
  • For an authentic image, the mask_path is "None".
  • For wild images without mask groundtruth, the index should at least contain "img_path" per line.
Training sets
Test sets
  • DEFACTO-12k
  • Columbia
  • COVER
  • NIST16
  • CASIAv1plus: Note that some of the authentic images in CASIAv1 also appear in CASIAv2. With those images fully replaced by Corel images that are new to both CASIAv1 and CASIAv2, we constructed a revision of CASIAv1 termed as CASIAv1plus. We recommend to use CASIAv1plus as an alternative to the original CASIAv1.

Trained Models

We offer FCNs and MVSS-Nets trained on CASIAv2 and DEFACTO_84k, respectively. Please download the models and place them in the ckpt directory:

The performance of these models for image-level manipulation detection (metric: AUC and image-level F1) is as follows. More details are reported in the paper.

Performance metric: AUC
Model Training data CASIAv1plus Columbia COVER DEFACTO-12k
MVSS_Net CASIAv2 0.932 0.980 0.731 0.573
MVSS_Net DEFACTO-84k 0.771 0.563 0.525 0.886
FCN CASIAv2 0.769 0.762 0.541 0.551
FCN DEFACTO-84k 0.629 0.535 0.543 0.840
Performance metric: Image-level F1 (threshold=0.5)
Model Training data CASIAv1plus Columbia COVER DEFACTO-12k
MVSS_Net CASIAv2 0.759 0.802 0.244 0.404
MVSS_Net DEFACTO-84k 0.685 0.353 0.360 0.799
FCN CASIAv2 0.684 0.481 0.180 0.458
FCN DEFACTO-84k 0.561 0.492 0.511 0.709

Inference & Evaluation

You can specify which pre-trained model to use by setting model_path in do_pred_and_eval.sh. Given a test_collection (e.g. CASIAv1plus or DEFACTO12k-test), the prediction maps and evaluation results will be saved under save_dir. The default threshold is set as 0.5.

bash do_pred_and_eval.sh $test_collection
#e.g. bash do_pred_and_eval.sh CASIAv1plus

For inference only, use following command to skip evaluation:

bash do_pred.sh $test_collection
#e.g. bash do_pred.sh CASIAv1plus

Demo

  • demo.ipynb: A step-by-step notebook tutorial showing the usage of a pre-trained model to detect manipulation in a specific image.

Citation

If you find this work useful in your research, please consider citing:

@InProceedings{MVSS_2021ICCV,  
author = {Chen, Xinru and Dong, Chengbo and Ji, Jiaqi and Cao, juan and Li, Xirong},  
title = {Image Manipulation Detection by Multi-View Multi-Scale Supervision},  
booktitle = {The IEEE International Conference on Computer Vision (ICCV)},  
year = {2021}  
}

Acknowledgments

Contact

If you enounter any issue when running the code, please feel free to reach us either by creating a new issue in the github or by emailing

Owner
dong_chengbo
dong_chengbo
Plug and play transformer you can find network structure and official complete code by clicking List

Plug-and-play Module Plug and play transformer you can find network structure and official complete code by clicking List The following is to quickly

8 Mar 27, 2022
[CVPR 2021] MiVOS - Mask Propagation module. Reproduced STM (and better) with training code :star2:. Semi-supervised video object segmentation evaluation.

MiVOS (CVPR 2021) - Mask Propagation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [arXiv] [Paper PDF] [Project Page] [Papers with Code] This repo impleme

Rex Cheng 106 Jan 03, 2023
A framework for the elicitation, specification, formalization and understanding of requirements.

A framework for the elicitation, specification, formalization and understanding of requirements.

NASA - Software V&V 161 Jan 03, 2023
FinEAS: Financial Embedding Analysis of Sentiment 📈

FinEAS: Financial Embedding Analysis of Sentiment 📈 (SentenceBERT for Financial News Sentiment Regression) This repository contains the code for gene

LHF Labs 31 Dec 13, 2022
App for identification of various objects. Based on YOLO v4 tiny architecture

Object_detection Repository containing trained model yolo v4 tiny, which is capable of identification 80 different classes Default feed is set to be a

Mateusz Kurdziel 0 Jun 22, 2022
HAR-stacked-residual-bidir-LSTMs - Deep stacked residual bidirectional LSTMs for HAR

HAR-stacked-residual-bidir-LSTM The project is based on this repository which is presented as a tutorial. It consists of Human Activity Recognition (H

Guillaume Chevalier 287 Dec 27, 2022
Code to reproduce the results in "Visually Grounded Reasoning across Languages and Cultures", EMNLP 2021.

marvl-code [WIP] This is the implementation of the approaches described in the paper: Fangyu Liu*, Emanuele Bugliarello*, Edoardo M. Ponti, Siva Reddy

25 Nov 15, 2022
Pytorch implementation of SimSiam Architecture

SimSiam-pytorch A simple pytorch implementation of Exploring Simple Siamese Representation Learning which is developed by Facebook AI Research (FAIR)

Saeed Shurrab 1 Oct 20, 2021
Expand human face editing via Global Direction of StyleCLIP, especially to maintain similarity during editing.

Oh-My-Face This project is based on StyleCLIP, RIFE, and encoder4editing, which aims to expand human face editing via Global Direction of StyleCLIP, e

AiLin Huang 51 Nov 17, 2022
Official PyTorch implementation of the NeurIPS 2021 paper StyleGAN3

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Eugenio Herrera 92 Nov 18, 2022
Code for Emergent Translation in Multi-Agent Communication

Emergent Translation in Multi-Agent Communication PyTorch implementation of the models described in the paper Emergent Translation in Multi-Agent Comm

Facebook Research 75 Jul 15, 2022
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022
CN24 is a complete semantic segmentation framework using fully convolutional networks

Build status: master (production branch): develop (development branch): Welcome to the CN24 GitHub repository! CN24 is a complete semantic segmentatio

Computer Vision Group Jena 123 Jul 14, 2022
SimBERT升级版(SimBERTv2)!

RoFormer-Sim RoFormer-Sim,又称SimBERTv2,是我们之前发布的SimBERT模型的升级版。 介绍 https://kexue.fm/archives/8454 训练 tensorflow 1.14 + keras 2.3.1 + bert4keras 0.10.6 下载

318 Dec 31, 2022
An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise Weight Sharing) by Sensetime Research.

An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise

45 Dec 08, 2022
source code for https://arxiv.org/abs/2005.11248 "Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics"

Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics This work will be published in Nature Biomedical

International Business Machines 71 Nov 15, 2022
Fully Adaptive Bayesian Algorithm for Data Analysis (FABADA) is a new approach of noise reduction methods. In this repository is shown the package developed for this new method based on \citepaper.

Fully Adaptive Bayesian Algorithm for Data Analysis FABADA FABADA is a novel non-parametric noise reduction technique which arise from the point of vi

18 Oct 20, 2022
[CVPR 2022 Oral] Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning (CVPR 2022 Oral) 2022-03-29: The paper was selected as a CVPR 2022 Oral paper! 2

249 Dec 28, 2022
Machine Learning automation and tracking

The Open-Source MLOps Orchestration Framework MLRun is an open-source MLOps framework that offers an integrative approach to managing your machine-lea

873 Jan 04, 2023
This library contains a Tensorflow implementation of the paper Stability Analysis of Unfolded WMMSE for Power Allocation

UWMMSE-stability Tensorflow implementation of Stability Analysis of UWMMSE Overview This library contains a Tensorflow implementation of the paper Sta

Arindam Chowdhury 1 Nov 16, 2022