Multitask Learning Strengthens Adversarial Robustness

Related tags

Deep LearningMTRobust
Overview

Multitask Learning Strengthens Adversarial Robustness

@inproceedings{mao2020multitask,
  author    = {Chengzhi Mao and
               Amogh Gupta and
               Vikram Nitin and
               Baishakhi Ray and
               Shuran Song and
               Junfeng Yang and
               Carl Vondrick},
  title     = {Multitask Learning Strengthens Adversarial Robustness},
  booktitle = {Computer Vision - {ECCV} 2020 - 16th European Conference, Glasgow,
               UK, August 23-28, 2020, Proceedings, Part {II}},
  series    = {Lecture Notes in Computer Science},
  volume    = {12347},
  pages     = {158--174},
  publisher = {Springer},
  year      = {2020},
  url       = {https://doi.org/10.1007/978-3-030-58536-5\_10},
  doi       = {10.1007/978-3-030-58536-5\_10},
}

Demo for Robustness under multitask attack

Download Cityscapes dataset from Cityscapes.

Download pretrained DRN-22 model from DRN model zoo.

Modify the path to data and model in demo_mtlrobust.py.

Run demo to see the trend that model overall robustness is increased when the output dimension increased.

To see the gradient norm measurement of robustness, set get_grad=True,

To see the actually robust accuracy for model, set test_acc_output_dim=False

python demo_mtlrobust.py

which explains why segmentation is inherently robust.

CityScape

Data preprocessing

Run python data_resize_cityscape.py to resize to smaller images.

Train Robust model against single task attack

  1. Set up the path to data in config/drn_d_22_cityscape_config.json

  2. Run cityscape_example.sh to train a main task with auxiliary task for robustness.

Taskonomy

Data Preprocessing

You can use our preprocessed data from preprocessed data

Or do from scratch

  1. Download data from official raw data.

  2. Run python data_resize_taskonomy.py to resize to smaller images.

  3. Rename segment_semantic to segmentsemantic.

Train Robust model against single task attack

  1. Set up the path to data in config/resnet18_taskonomy_config.json

  2. Run taskonomy_example.sh to train a main task with auxiliary task for robustness. For different task, we have different different setup, refer to our paper and supplementary for details.

Model evaluation

We offer our pretrained models to download here: Cityscapes segmentation depth and Taskonomy taskonomy segmentation demo

After setting up the path to your downloaded models in test_cityscapes_seg.py and test_taskonomy_seg.py,

Run python test_cityscapes_seg.py and python test_taskonomy_seg.py for evaluating the robustness of multitask models under single task attacks.

Pretrained models for other tasks for Taskonomy can be downloaded [here, comming soon](comming soon)

Acknowledgement

Our code refer the code at: https://github.com/fyu/drn/blob/master/drn.py Taskonomy https://github.com/tstandley/taskgrouping,

We thank the authors for open sourcing their code.

Owner
Columbia University
Columbia University
This is our ARTS test set, an enriched test set to probe Aspect Robustness of ABSA.

This is the repository for our 2020 paper "Tasty Burgers, Soggy Fries: Probing Aspect Robustness in Aspect-Based Sentiment Analysis". Data We provide

35 Nov 16, 2022
Using Machine Learning to Test Causal Hypotheses in Conjoint Analysis

Readme File for "Using Machine Learning to Test Causal Hypotheses in Conjoint Analysis" by Ham, Imai, and Janson. (2022) All scripts were written and

0 Jan 27, 2022
PyTorch implementation for Score-Based Generative Modeling through Stochastic Differential Equations (ICLR 2021, Oral)

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains a PyTorch implementation for the paper Score-Based Genera

Yang Song 757 Jan 04, 2023
A minimal yet resourceful implementation of diffusion models (along with pretrained models + synthetic images for nine datasets)

A minimal yet resourceful implementation of diffusion models (along with pretrained models + synthetic images for nine datasets)

Vikash Sehwag 65 Dec 19, 2022
QA-GNN: Question Answering using Language Models and Knowledge Graphs

QA-GNN: Question Answering using Language Models and Knowledge Graphs This repo provides the source code & data of our paper: QA-GNN: Reasoning with L

Michihiro Yasunaga 434 Jan 04, 2023
An open source app to help calm you down when needed.

By: Seanpm2001, Et; Al. Top README.md Read this article in a different language Sorted by: A-Z Sorting options unavailable ( af Afrikaans Afrikaans |

Sean P. Myrick V19.1.7.2 2 Oct 24, 2022
Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

ChongjianGE 89 Dec 02, 2022
PyTorch Live is an easy to use library of tools for creating on-device ML demos on Android and iOS.

PyTorch Live is an easy to use library of tools for creating on-device ML demos on Android and iOS. With Live, you can build a working mobile app ML demo in minutes.

559 Jan 01, 2023
A fast poisson image editing implementation that can utilize multi-core CPU or GPU to handle a high-resolution image input.

Poisson Image Editing - A Parallel Implementation Jiayi Weng (jiayiwen), Zixu Chen (zixuc) Poisson Image Editing is a technique that can fuse two imag

Jiayi Weng 110 Dec 27, 2022
This repo contains the official code of our work SAM-SLR which won the CVPR 2021 Challenge on Large Scale Signer Independent Isolated Sign Language Recognition.

Skeleton Aware Multi-modal Sign Language Recognition By Songyao Jiang, Bin Sun, Lichen Wang, Yue Bai, Kunpeng Li and Yun Fu. Smile Lab @ Northeastern

Isen (Songyao Jiang) 128 Dec 08, 2022
Codes accompanying the paper "Believe What You See: Implicit Constraint Approach for Offline Multi-Agent Reinforcement Learning" (NeurIPS 2021 Spotlight

Implicit Constraint Q-Learning This is a pytorch implementation of ICQ on Datasets for Deep Data-Driven Reinforcement Learning (D4RL) and ICQ-MA on SM

42 Dec 23, 2022
Material for my PyConDE & PyData Berlin 2022 Talk "5 Steps to Speed Up Your Data-Analysis on a Single Core"

5 Steps to Speed Up Your Data-Analysis on a Single Core Material for my talk at the PyConDE & PyData Berlin 2022 Description Your data analysis pipeli

Jonathan Striebel 9 Dec 12, 2022
CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes

CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes. CHERRY is based on a deep learning model, which consists of a graph convolutional encoder and a link

Kenneth Shang 12 Dec 15, 2022
Code for "Typilus: Neural Type Hints" PLDI 2020

Typilus A deep learning algorithm for predicting types in Python. Please find a preprint here. This repository contains its implementation (src/) and

47 Nov 08, 2022
PyTorch experiments with the Zalando fashion-mnist dataset

zalando-pytorch PyTorch experiments with the Zalando fashion-mnist dataset Project Organization ├── LICENSE ├── Makefile - Makefile with co

Federico Baldassarre 31 Sep 25, 2021
The "breathing k-means" algorithm with datasets and example notebooks

The Breathing K-Means Algorithm (with examples) The Breathing K-Means is an approximation algorithm for the k-means problem that (on average) is bette

Bernd Fritzke 75 Nov 17, 2022
Discovering and Achieving Goals via World Models

Discovering and Achieving Goals via World Models [Project Website] [Benchmark Code] [Video (2min)] [Oral Talk (13min)] [Paper] Russell Mendonca*1, Ole

Oleg Rybkin 71 Dec 22, 2022
Code release for NeRF (Neural Radiance Fields)

NeRF: Neural Radiance Fields Project Page | Video | Paper | Data Tensorflow implementation of optimizing a neural representation for a single scene an

6.5k Jan 01, 2023
A PyTorch implementation of "From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network" (ICCV2021)

From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network The official code of VisionLAN (ICCV2021). VisionLAN successfully a

81 Dec 12, 2022
[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding Official Pytorch implementation of Negative Sample Matter

Multimedia Computing Group, Nanjing University 69 Dec 26, 2022