An official PyTorch implementation of the paper "Learning by Aligning: Visible-Infrared Person Re-identification using Cross-Modal Correspondences", ICCV 2021.

Related tags

Computer VisionLbA
Overview

PyTorch implementation of Learning by Aligning (ICCV 2021)

This is an official PyTorch implementation of the paper "Learning by Aligning: Visible-Infrared Person Re-identification using Cross-Modal Correspondences", ICCV 2021.

For more details, visit our project site or see our paper.

Requirements

  • Python 3.8
  • PyTorch 1.7.1
  • GPU memory >= 11GB

Getting started

First, clone our git repository.

git clone https://github.com/cvlab-yonsei/LbA.git
cd LbA

Docker

You can use docker pull sanghslee/ps:1.7.1-cuda11.0-cudnn8-runtime

Prepare datasets

  • SYSU-MM01: download from this link.
    • For SYSU-MM01, you need to preprocess the .jpg files into .npy files by running:
      • python utils/pre_preprocess_sysu.py --data_dir /path/to/SYSU-MM01
    • Modify the dataset directory below accordingly.
      • L63 of train.py
      • L54 of test.py

Train

  • run python train.py --method full

  • Important:

    • Performances reported during training does not reflect exact performances of your model. This is due to 1) evaluation protocols of the datasets and 2) random seed configurations.
    • Make sure you seperately run test.py to obtain correct results to be reported in your paper.

Test

  • run python test.py --method full
  • The results should be around:
dataset method mAP rank-1
SYSU-MM01 baseline 49.54 50.43
SYSU-MM01 full 54.14 55.41

Pretrained weights

  • Download [SYSU-MM01]
  • The results should be:
dataset method mAP rank-1
SYSU-MM01 full 55.22 56.31

Bibtex

@article{park2021learning,
  title={Learning by Aligning: Visible-Infrared Person Re-identification using Cross-Modal Correspondences},
  author={Park, Hyunjong and Lee, Sanghoon and Lee, Junghyup and Ham, Bumsub},
  journal={arXiv preprint arXiv:2108.07422},
  year={2021}
}

Credits

Our implementation is based on Mang Ye's code here.

Comments
  • something about run this code

    something about run this code

    thanks for your code, there is something wrong when i run you code,in this line: loss = torch.mean(comask_pos * self.criterion(feat, feat_recon_pos, feat_recon_neg)) the wrong is:RuntimeError: The size of tensor a (9) must match the size of tensor b (18) at non-singleton dimension 3 could you give me some help?

    opened by zhuchuanleiqq 12
  • When running

    When running "train. Py", there is a problem on line 132 of the "model. Py" file:

    When running "train. Py", there is a problem on line(loss = torch.mean(comask_pos * self.criterion(feat, feat_recon_pos, feat_recon_neg))) 132 of the "model. Py" file: Traceback:RuntimeError: The size of tensor a (9) must match the size of tensor b (18) at non-singleton dimension 3

    opened by redsoup 1
  • Question about the training speed

    Question about the training speed

    Thanks for your work.

    When I tried to reproduce your results with an Nvidia 2080Ti (as recommended by the paper), however, the training speed seemed very slow. It nearly took 20 minutes for each epoch on SYSU-MM01, which mismatched with the reported 8 hours training time.

    I have already used cuda for acceleration. Thus, I wonder how did this happen. Thank you.

    opened by hansonchen1996 1
  • Problems about the performance

    Problems about the performance

    I have run your source code on both SYSU and RegDB datasets, but I didn't get the performance of your paper. So I want to know how to set the hyper-parameter to get the performance of your paper?

    opened by Mrkkew 1
  • Visualization problem

    Visualization problem

    Hello, Thanks for your great work, I am wondering about the visualization part, use mask and comask matrix in SYSU-MM01 dataset. Can I get some details about the steps of your visualization method? Thank you very much.

    opened by sunset233 0
Owner
CV Lab @ Yonsei University
CV Lab @ Yonsei University
Total Text Dataset. It consists of 1555 images with more than 3 different text orientations: Horizontal, Multi-Oriented, and Curved, one of a kind.

Total-Text-Dataset (Official site) Updated on April 29, 2020 (Detection leaderboard is updated - highlighted E2E methods. Thank you shine-lcy.) Update

Chee Seng Chan 671 Dec 27, 2022
Code for the "Sensing leg movement enhances wearable monitoring of energy expenditure" paper.

EnergyExpenditure Code for the "Sensing leg movement enhances wearable monitoring of energy expenditure" paper. Additional data for replicating this s

Patrick S 42 Oct 26, 2022
Play the Namibian game of Owela against a terrible AI. Built using Django and htmx.

Owela Club A Django project for playing the Namibian game of Owela against a dumb AI. Built following the rules described on the Mancala World wiki pa

Adam Johnson 18 Jun 01, 2022
Dataset and Code for ICCV 2021 paper "Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme"

Dataset and Code for RealVSR Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme Xi Yang, Wangmeng Xiang,

Xi Yang 91 Nov 22, 2022
This repository provides train&test code, dataset, det.&rec. annotation, evaluation script, annotation tool, and ranking.

SCUT-CTW1500 Datasets We have updated annotations for both train and test set. Train: 1000 images [images][annos] Additional point annotation for each

Yuliang Liu 600 Dec 18, 2022
question‘s area recognition using image processing and regular expression

======================================== Paper-Question-recognition ======================================== question‘s area recognition using image p

Yuta Mizuki 7 Dec 27, 2021
Detect the mathematical formula from the given picture and the same formula is extracted and converted into the latex code

Mathematical formulae extractor The goal of this project is to create a learning based system that takes an image of a math formula and returns corres

6 May 22, 2022
Demo processor to illustrate OCR-D Python API

ocrd_vandalize/ Demo processor to illustrate the OCR-D/core Python API Description :TODO: write docs :) Installation From PyPI pip3 install ocrd_vanda

Konstantin Baierer 5 May 05, 2022
Fusion 360 Add-in that creates a pair of toothed curves that can be used to split a body and create two pieces that slide and lock together.

Fusion-360-Add-In-PuzzleSpline Fusion 360 Add-in that creates a pair of toothed curves that can be used to split a body and create two pieces that sli

Michiel van Wessem 1 Nov 15, 2021
InverseRenderNet: Learning single image inverse rendering, CVPR 2019.

InverseRenderNet: Learning single image inverse rendering !! Check out our new work InverseRenderNet++ paper and code, which improves the inverse rend

Ye Yu 141 Dec 20, 2022
A tool for extracting text from scanned documents (via OCR), with user-defined post-processing.

The project is based on older versions of tesseract and other tools, and is now superseded by another project which allows for more granular control o

Maxim 32 Jul 24, 2022
nofacedb/faceprocessor is a face recognition engine for NoFaceDB program complex.

faceprocessor nofacedb/faceprocessor is a face recognition engine for NoFaceDB program complex. Tech faceprocessor uses a number of open source projec

NoFaceDB 3 Sep 06, 2021
Ddddocr - 通用验证码识别OCR pypi版

带带弟弟OCR通用验证码识别SDK免费开源版 今天ddddocr又更新啦! 当前版本为1.3.1 想必很多做验证码的新手,一定头疼碰到点选类型的图像,做样本费时

Sml2h3 4.4k Dec 31, 2022
Distilling Knowledge via Knowledge Review, CVPR 2021

ReviewKD Distilling Knowledge via Knowledge Review Pengguang Chen, Shu Liu, Hengshuang Zhao, Jiaya Jia This project provides an implementation for the

DV Lab 194 Dec 28, 2022
Controlling the computer volume with your hands // OpenCV

HandsControll-AI Controlling the computer volume with your hands // OpenCV Step 1 git clone https://github.com/Hayk-21/HandsControll-AI.git pip instal

Hayk 1 Nov 04, 2021
Text Detection from images using OpenCV

EAST Detector for Text Detection OpenCV’s EAST(Efficient and Accurate Scene Text Detection ) text detector is a deep learning model, based on a novel

Abhishek Singh 88 Oct 20, 2022
Characterizing possible failure modes in physics-informed neural networks.

Characterizing possible failure modes in physics-informed neural networks This repository contains the PyTorch source code for the experiments in the

Aditi Krishnapriyan 55 Jan 02, 2023
Multi-Oriented Scene Text Detection via Corner Localization and Region Segmentation

This is the official implementation of "Multi-Oriented Scene Text Detection via Corner Localization and Region Segmentation". For more details, please

Pengyuan Lyu 309 Dec 06, 2022
A simple python program to record security cam footage by detecting a face and body of a person in the frame.

SecurityCam A simple python program to record security cam footage by detecting a face and body of a person in the frame. This code was created by me,

1 Nov 08, 2021
A bot that plays TFT using OCR. Keeps track of bench, board, items, and plays the user defined team comp.

NOTES: To ensure best results, make sure you are running this on a computer that has decent specs. 1920x1080 fullscreen is required in League, game mu

francis 125 Dec 30, 2022