Data Competition: automated systems that can detect whether people are not wearing masks or are wearing masks incorrectly

Overview

Table of contents

  1. Introduction
  2. Dataset
  3. Model & Metrics
  4. How to Run

DATA COMPETITION

The COVID-19 pandemic, which is caused by the SARS-CoV-2 virus, is still continuing strong, infecting hundreds of millions of people and killing millions. Face masks reduce transmission by preventing aerosols and droplets from spreading too far into the atmosphere. As a result, there is a growing demand for automated systems that can detect whether people are not wearing masks or are wearing masks incorrectly. This competition was designed in order to solve the problem mentioned above. This competition is unlike any other that has come before it. With a fixed model, participants will receive model code and configuration code that organizers use to train models. The candidate's task is to use data processing and generation techniques to improve the model's performance, then submit the dataset to the organizing team for training and evaluation on the private test set. The winner is the team with the highest score on the private test set.

Dataset

  • A dataset of 1100 images will be sent to you. This is an object detection dataset consisting of employee images at the office. The dataset has been assigned 3 labels by us which are no mask, mask, and incorrect mask, with the numbers 0,1,2 corresponding to each.

  • The dataset has been divided into three parts for you: train, valid, and public test. We have prepared a private test to be able to evaluate the candidate's model. This private test will be made public after the contest ends. In the public test, you can get a basic idea of the private test. Download the dataset here

  • To improve the model's performance, you can re-label it and employ data augmentation to generate more images (up to 3000).

The number of each label in each part is shown below:

No mask Mask incorrect mask
Train 308 882 51
Val 97 190 9
Public_test 47 95 13

Model & Metrics

  • The challenge is defined as object detection challenge. In the competition, We use YOLOv5s and also use a pre-trained model trained with easy mask dataset to greatly reduce training time.

  • We fix all hyperparameters of the model and do not use any augmentation tips in the source code. Therefore, each participant need to build the best possible dataset by relabeling incorrect labels, splitting train/val, augmentation tips, adding new dataset, etc.

  • In training process, Early Stopping method with patience setten to 100 iterations is used to keep track of validation set's [email protected]. Detail about [email protected] metric:

[email protected] = [email protected] = 0.2 * AP50_w + 0.3 * AP50_nw + 0.5 * AP50_wi

Where,
AP50_w: AP50 on valid mask boxes
AP50_nw: AP50 on non-mask boxes
AP50_wi: AP50 on invalid mask boxes

  • The [email protected] metric is also used as the main metric to evaluate participant's submission on private testing set.

How to Run

QuickStart

Click the image below

Open In Colab

Install requirements

  • All requirements are included in requirements.txt

  • Run the script below to clone and install all requirements

git clone https://github.com/fsoft-ailab/Data-Competition
cd Data-Competition
pip3 install -r requirements.txt

Training

  • Put your dataset into the Data-Competition folder. The structure of dataset folder is followed as folder structure below:
folder-name
├── images
│   ├── train
│   │   ├── train_img1.jpg
│   │   ├── train_img2.jpg
│   │   └── ...
│   │   
│   └── val
│       ├── val_img1.jpg
│       ├── val_img2.jpg
│       └── ...
│   
└── labels
    ├── train
    │   ├── train_img1.txt
    │   ├── train_img2.txt
    │   └── ...
    │   
    └── val
        ├── val_img1.txt
        ├── val_img2.txt
        └── ...
  • Change relative paths to train and val images folder in config/data_cfg.yaml file

  • train_cfg.yaml where we set up the model during training. You should not change such hyperparameters because it will result in incorrect results. The training results are saved in the results/train/ .

  • Run the script below to train the model. Specify particular name to identify your experiment:

python3 train.py --batch-size 64 --device 0 --name 
    

   

Note: If you get out of memory error, you can decrease batch-size to multiple of 2 as 32, 16.

Evaluation

  • Run script below to evaluate on particular dataset.
  • The --task's value is only one of train, val, or test, respectively evaluating on the training set, validation set, or public testing set.
  • Note: Specify relative path to images folder which you evaluate in config/data_cfg.yaml file.
python3 val.py --weights 
   
     --task test --name 
    
      --batch-size 64 --device 0
                                                 val
                                                 train

    
   
  • Results are saved at results/evaluate/ / .

Detection

  • You can use this script to make inferences on particular folder

  • Results are saved at .

python3 detect.py --weights 
   
     --source 
    
      --dir 
     
       --device 0

     
    
   
  • You can find more default arguments at detect.py

References

Owner
Thanh Dat Vu
Thanh Dat Vu
A Python module for clustering creators of social media content into networks

sm_content_clustering A Python module for clustering creators of social media content into networks. Currently supports identifying potential networks

72 Dec 30, 2022
PyNHD is a part of HyRiver software stack that is designed to aid in watershed analysis through web services.

A part of HyRiver software stack that provides access to NHD+ V2 data through NLDI and WaterData web services

Taher Chegini 23 Dec 14, 2022
Time ranges with python

timeranges Time ranges. Read the Docs Installation pip timeranges is available on pip: pip install timeranges GitHub You can also install the latest v

Micael Jarniac 2 Sep 01, 2022
A set of functions and analysis classes for solvation structure analysis

SolvationAnalysis The macroscopic behavior of a liquid is determined by its microscopic structure. For ionic systems, like batteries and many enzymes,

MDAnalysis 19 Nov 24, 2022
Exploratory Data Analysis for Employee Retention Dataset

Exploratory Data Analysis for Employee Retention Dataset Employee turn-over is a very costly problem for companies. The cost of replacing an employee

kana sudheer reddy 2 Oct 01, 2021
The Master's in Data Science Program run by the Faculty of Mathematics and Information Science

The Master's in Data Science Program run by the Faculty of Mathematics and Information Science is among the first European programs in Data Science and is fully focused on data engineering and data a

Amir Ali 2 Jun 17, 2022
This mini project showcase how to build and debug Apache Spark application using Python

Spark app can't be debugged using normal procedure. This mini project showcase how to build and debug Apache Spark application using Python programming language. There are also options to run Spark a

Denny Imanuel 1 Dec 29, 2021
AptaMat is a simple script which aims to measure differences between DNA or RNA secondary structures.

AptaMAT Purpose AptaMat is a simple script which aims to measure differences between DNA or RNA secondary structures. The method is based on the compa

GEC UTC 3 Nov 03, 2022
WithPipe is a simple utility for functional piping in Python.

A utility for functional piping in Python that allows you to access any function in any scope as a partial.

Michael Milton 1 Oct 26, 2021
Predictive Modeling & Analytics on Home Equity Line of Credit

Predictive Modeling & Analytics on Home Equity Line of Credit Data (Python) HMEQ Data Set In this assignment we will use Python to examine a data set

Dhaval Patel 1 Jan 09, 2022
Used for data processing in machine learning, and help us to construct ML model more easily from scratch

Used for data processing in machine learning, and help us to construct ML model more easily from scratch. Can be used in linear model, logistic regression model, and decision tree.

ShawnWang 0 Jul 05, 2022
Weather Image Recognition - Python weather application using series of data

Weather Image Recognition - Python weather application using series of data

Kushal Shingote 1 Feb 04, 2022
2019 Data Science Bowl

Kaggle-2019-Data-Science-Bowl-Solution - Here i present my solution to kaggle 2019 data science bowl and how i improved it to win a silver medal in that competition.

Deepak Nandwani 1 Jan 01, 2022
PyStan, a Python interface to Stan, a platform for statistical modeling. Documentation: https://pystan.readthedocs.io

PyStan PyStan is a Python interface to Stan, a package for Bayesian inference. Stan® is a state-of-the-art platform for statistical modeling and high-

Stan 229 Dec 29, 2022
DefAP is a program developed to facilitate the exploration of a material's defect chemistry

DefAP is a program developed to facilitate the exploration of a material's defect chemistry. A large number of features are provided and rapid exploration is supported through the use of autoplotting

6 Oct 25, 2022
The official pytorch implementation of ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias

ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias Introduction | Updates | Usage | Results&Pretrained Models | Statement | Intr

104 Nov 27, 2022
A Python package for the mathematical modeling of infectious diseases via compartmental models

A Python package for the mathematical modeling of infectious diseases via compartmental models. Originally designed for epidemiologists, epispot can be adapted for almost any type of modeling scenari

epispot 12 Dec 28, 2022
track your GitHub statistics

GitHub-Stalker track your github statistics 👀 features find new followers or unfollowers find who got a star on your project or remove stars find who

Bahadır Araz 34 Nov 18, 2022
Desafio 1 ~ Bantotal

Challenge 01 | Bantotal Please read the instructions for the challenge by selecting your preferred language below: Español Português License Copyright

Maratona Behind the Code 44 Sep 28, 2022
Detailed analysis on fraud claims in insurance companies, gives you information as to why huge loss take place in insurance companies

Insurance-Fraud-Claims Detailed analysis on fraud claims in insurance companies, gives you information as to why huge loss take place in insurance com

1 Jan 27, 2022