Python port of Google's libphonenumber

Overview

phonenumbers Python Library

Coverage Status

This is a Python port of Google's libphonenumber library It supports Python 2.5-2.7 and Python 3.x (in the same codebase, with no 2to3 conversion needed).

Original Java code is Copyright (C) 2009-2015 The Libphonenumber Authors.

Release HISTORY, derived from upstream release notes.

Installation

Install using pip with:

pip install phonenumbers

Example Usage

The main object that the library deals with is a PhoneNumber object. You can create this from a string representing a phone number using the parse function, but you also need to specify the country that the phone number is being dialled from (unless the number is in E.164 format, which is globally unique).

>>> import phonenumbers
>>> x = phonenumbers.parse("+442083661177", None)
>>> print(x)
Country Code: 44 National Number: 2083661177 Leading Zero: False
>>> type(x)
<class 'phonenumbers.phonenumber.PhoneNumber'>
>>> y = phonenumbers.parse("020 8366 1177", "GB")
>>> print(y)
Country Code: 44 National Number: 2083661177 Leading Zero: False
>>> x == y
True
>>> z = phonenumbers.parse("00 1 650 253 2222", "GB")  # as dialled from GB, not a GB number
>>> print(z)
Country Code: 1 National Number: 6502532222 Leading Zero(s): False

The PhoneNumber object that parse produces typically still needs to be validated, to check whether it's a possible number (e.g. it has the right number of digits) or a valid number (e.g. it's in an assigned exchange).

>>> z = phonenumbers.parse("+120012301", None)
>>> print(z)
Country Code: 1 National Number: 20012301 Leading Zero: False
>>> phonenumbers.is_possible_number(z)  # too few digits for USA
False
>>> phonenumbers.is_valid_number(z)
False
>>> z = phonenumbers.parse("+12001230101", None)
>>> print(z)
Country Code: 1 National Number: 2001230101 Leading Zero: False
>>> phonenumbers.is_possible_number(z)
True
>>> phonenumbers.is_valid_number(z)  # NPA 200 not used
False

The parse function will also fail completely (with a NumberParseException) on inputs that cannot be uniquely parsed, or that can't possibly be phone numbers.

>>> z = phonenumbers.parse("02081234567", None)  # no region, no + => unparseable
Traceback (most recent call last):
  File "phonenumbers/phonenumberutil.py", line 2350, in parse
    "Missing or invalid default region.")
phonenumbers.phonenumberutil.NumberParseException: (0) Missing or invalid default region.
>>> z = phonenumbers.parse("gibberish", None)
Traceback (most recent call last):
  File "phonenumbers/phonenumberutil.py", line 2344, in parse
    "The string supplied did not seem to be a phone number.")
phonenumbers.phonenumberutil.NumberParseException: (1) The string supplied did not seem to be a phone number.

Once you've got a phone number, a common task is to format it in a standardized format. There are a few formats available (under PhoneNumberFormat), and the format_number function does the formatting.

>>> phonenumbers.format_number(x, phonenumbers.PhoneNumberFormat.NATIONAL)
'020 8366 1177'
>>> phonenumbers.format_number(x, phonenumbers.PhoneNumberFormat.INTERNATIONAL)
'+44 20 8366 1177'
>>> phonenumbers.format_number(x, phonenumbers.PhoneNumberFormat.E164)
'+442083661177'

If your application has a UI that allows the user to type in a phone number, it's nice to get the formatting applied as the user types. The AsYouTypeFormatter object allows this.

>>> formatter = phonenumbers.AsYouTypeFormatter("US")
>>> formatter.input_digit("6")
'6'
>>> formatter.input_digit("5")
'65'
>>> formatter.input_digit("0")
'650'
>>> formatter.input_digit("2")
'650 2'
>>> formatter.input_digit("5")
'650 25'
>>> formatter.input_digit("3")
'650 253'
>>> formatter.input_digit("2")
'650-2532'
>>> formatter.input_digit("2")
'(650) 253-22'
>>> formatter.input_digit("2")
'(650) 253-222'
>>> formatter.input_digit("2")
'(650) 253-2222'

Sometimes, you've got a larger block of text that may or may not have some phone numbers inside it. For this, the PhoneNumberMatcher object provides the relevant functionality; you can iterate over it to retrieve a sequence of PhoneNumberMatch objects. Each of these match objects holds a PhoneNumber object together with information about where the match occurred in the original string.

>>> text = "Call me at 510-748-8230 if it's before 9:30, or on 703-4800500 after 10am."
>>> for match in phonenumbers.PhoneNumberMatcher(text, "US"):
...     print(match)
...
PhoneNumberMatch [11,23) 510-748-8230
PhoneNumberMatch [51,62) 703-4800500
>>> for match in phonenumbers.PhoneNumberMatcher(text, "US"):
...     print(phonenumbers.format_number(match.number, phonenumbers.PhoneNumberFormat.E164))
...
+15107488230
+17034800500

You might want to get some information about the location that corresponds to a phone number. The geocoder.area_description_for_number does this, when possible.

>>> from phonenumbers import geocoder
>>> ch_number = phonenumbers.parse("0431234567", "CH")
>>> geocoder.description_for_number(ch_number, "de")
'Zürich'
>>> geocoder.description_for_number(ch_number, "en")
'Zurich'
>>> geocoder.description_for_number(ch_number, "fr")
'Zurich'
>>> geocoder.description_for_number(ch_number, "it")
'Zurigo'

For mobile numbers in some countries, you can also find out information about which carrier originally owned a phone number.

>>> from phonenumbers import carrier
>>> ro_number = phonenumbers.parse("+40721234567", "RO")
>>> carrier.name_for_number(ro_number, "en")
'Vodafone'

You might also be able to retrieve a list of time zone names that the number potentially belongs to.

>>> from phonenumbers import timezone
>>> gb_number = phonenumbers.parse("+447986123456", "GB")
>>> timezone.time_zones_for_number(gb_number)
('Atlantic/Reykjavik', 'Europe/London')

For more information about the other functionality available from the library, look in the unit tests or in the original libphonenumber project.

Memory Usage

The library includes a lot of metadata, potentially giving a significant memory overhead. There are two mechanisms for dealing with this.

  • The normal metadata for the core functionality of the library is loaded on-demand, on a region-by-region basis (i.e. the metadata for a region is only loaded on the first time it is needed).
  • Metadata for extended functionality is held in separate packages, which therefore need to be explicitly loaded separately. This affects:
    • The geocoding metadata, which is held in phonenumbers.geocoder and used by the geocoding functions (geocoder.description_for_number, geocoder.description_for_valid_number or geocoder.country_name_for_number).
    • The carrier metadata, which is held in phonenumbers.carrier and used by the mapping functions (carrier.name_for_number or carrier.name_for_valid_number).
    • The timezone metadata, which is held in phonenumbers.timezone and used by the timezone functions (time_zones_for_number or time_zones_for_geographical_number).

The phonenumberslite version of the library does not include the geocoder, carrier and timezone packages, which can be useful if you have problems installing the main phonenumbers library due to space/memory limitations.

If you need to ensure that the metadata memory use is accounted for at start of day (i.e. that a subsequent on-demand load of metadata will not cause a pause or memory exhaustion):

  • Force-load the normal metadata by calling phonenumbers.PhoneMetadata.load_all().
  • Force-load the extended metadata by importing the appropriate packages (phonenumbers.geocoder, phonenumbers.carrier, phonenumbers.timezone).

The phonenumberslite version of the package does not include the geocoding, carrier and timezone metadata, which can be useful if you have problems installing the main phonenumbers package due to space/memory limitations.

Project Layout

  • The python/ directory holds the Python code.
  • The resources/ directory is a copy of the resources/ directory from libphonenumber. This is not needed to run the Python code, but is needed when upstream changes to the master metadata need to be incorporated.
  • The tools/ directory holds the tools that are used to process upstream changes to the master metadata.
Owner
David Drysdale
David Drysdale
The Scary Story - A Text Adventure

This is a text adventure which I made in python 3. This is one of my first big projects so any feedback would be greatly appreciated.

2 Feb 20, 2022
A Python library that provides an easy way to identify devices like mobile phones, tablets and their capabilities by parsing (browser) user agent strings.

Python User Agents user_agents is a Python library that provides an easy way to identify/detect devices like mobile phones, tablets and their capabili

Selwin Ong 1.3k Dec 22, 2022
You can encode and decode base85, ascii85, base64, base32, and base16 with this tool.

You can encode and decode base85, ascii85, base64, base32, and base16 with this tool.

8 Dec 20, 2022
Skype export archive to text converter for python

Skype export archive to text converter This software utility extracts chat logs

Roland Pihlakas open source projects 2 Jun 30, 2022
Python Lex-Yacc

PLY (Python Lex-Yacc) Copyright (C) 2001-2020 David M. Beazley (Dabeaz LLC) All rights reserved. Redistribution and use in source and binary forms, wi

David Beazley 2.4k Dec 31, 2022
ChirpText is a collection of text processing tools for Python 3.

ChirpText is a collection of text processing tools for Python 3. It is not meant to be a powerful tank like the popular NTLK but a small package which

Le Tuan Anh 5 Nov 30, 2022
A python Tk GUI that creates, writes text and attaches images into a custom spreadsheet file

A python Tk GUI that creates, writes text and attaches images into a custom spreadsheet file

Mirko Simunovic 13 Dec 09, 2022
A production-ready pipeline for text mining and subject indexing

A production-ready pipeline for text mining and subject indexing

UF Open Source Club 12 Nov 06, 2022
Repository containing the code for An-Gocair text normaliser

Scottish Gaelic Text Normaliser The following project contains the code and resources for the Scottish Gaelic text normalisation project. The repo can

3 Jun 28, 2022
Widevine KEY Extractor in Python

Widevine Client 3 This was originally written by T3rry7f. This repo is slightly modified version of his repo. This only works on standard Windows! Usa

Vank0n (SJJeon) 68 Dec 29, 2022
A query extract python package

A query extract python package

Fayas Noushad 4 Nov 28, 2021
🐸 Identify anything. pyWhat easily lets you identify emails, IP addresses, and more. Feed it a .pcap file or some text and it'll tell you what it is! 🧙‍♀️

🐸 Identify anything. pyWhat easily lets you identify emails, IP addresses, and more. Feed it a .pcap file or some text and it'll tell you what it is! 🧙‍♀️

Brandon 5.6k Jan 03, 2023
Word-Generator - Generates meaningful words from dictionary with given no. of letters and words.

Meaningful Word Generator Generates meaningful words from dictionary with given no. of letters and words. This might be useful for generating short li

Mohammed Rabil 1 Jan 01, 2022
一款高性能敏感词(非法词/脏字)检测过滤组件,附带繁体简体互换,支持全角半角互换,汉字转拼音,模糊搜索等功能。

一款高性能非法词(敏感词)检测组件,附带繁体简体互换,支持全角半角互换,获取拼音首字母,获取拼音字母,拼音模糊搜索等功能。

ToolGood 3.6k Jan 07, 2023
A program that looks through entered text and replaces certain commands with mathematical symbols

TextToSymbolConverter A program that looks through entered text and replaces certain commands with mathematical symbols Example: Syntax: Enter text in

1 Jan 02, 2022
PyMultiDictionary is a Dictionary Module for Python 3+ to get meanings, translations, synonyms and antonyms of words in 20 different languages

PyMultiDictionary PyMultiDictionary is a Dictionary Module for Python 3+ to get meanings, translations, synonyms and antonyms of words in 20 different

Pablo Pizarro R. 19 Dec 26, 2022
WorldCloud Orçamento de Estado 2022

World Cloud Orçamento de Estado 2022 What it does This script creates a worldcloud, masked on a image, from a txt file How to run it? Install all libr

Jorge Gomes 2 Oct 12, 2021
Wikipedia Extractive Text Summarizer + Keywords Identification (entropy-based)

Wikipedia Extractive Text Summarizer + Keywords Identification (entropy-based)Wikipedia Extractive Text Summarizer + Keywords Identification (entropy-based)

Kevin Lai 1 Nov 08, 2021
Wordle strategy: Find frequency of letters appearing in 5-letter words in the English language

Find frequency of letters appearing in 5-letter words in the English language In

Gabriel Apolinário 1 Jan 17, 2022