An Implementation of the seglink alogrithm in paper Detecting Oriented Text in Natural Images by Linking Segments

Overview

Tips: A more recent scene text detection algorithm: PixelLink, has been implemented here: https://github.com/ZJULearning/pixel_link

Contents:

  1. Introduction
  2. Installation&requirements
  3. Datasets
  4. Problems
  5. Models
  6. Test Your own images
  7. Models
  8. Some Comments

Introduction

This is a re-implementation of the SegLink text detection algorithm described in the paper Detecting Oriented Text in Natural Images by Linking Segments, Baoguang Shi, Xiang Bai, Serge Belongie

Installation&requirements

  1. tensorflow-gpu 1.1.0

  2. cv2. I'm using 2.4.9.1, but some other versions less than 3 should be OK too. If not, try to switch to the version as mine.

  3. download the project pylib and add the src folder to your PYTHONPATH

If any other requirements unmet, just install them following the error msg.

Datasets

  1. SynthText

  2. ICDAR2015

Convert them into tfrecords format using the scripts in datasets if you wanna train your own model.

Problems

The convergence speed of my seglink is quite slow compared with that described in the paper. For example, the authors of SegLink paper said that a good result can be obtained by training on Synthtext for less than 10W iterations and on IC15-train for less than 1W iterations. However, using my implementation, I have to train on SynthText for about 20W iterations and another more than 10W iterations on IC15-train, to get a competitive result.

Several reasons may contribute to the slow convergency of my model:

  1. Batch size. I don't have 4 12G-Titans for training, as described in the paper. Instead, I trained my model on two 8G GeForce GTX 1080 or two Titans.
  2. Learning Rate. In the paper, 10^-3 and 10^-4 have been used. But I adopted a fixed learning rate of 10^-4.
  3. Different initialization model. I used the pretrained VGG model from SSD-caffe on coco , because I thought it better than VGG trained on ImageNet. However, it seems that my point of view does not hold. 4.Some other differences exists maybe, I am not sure.

Models

Two models trained on SynthText and IC15 train can be downloaded.

  1. seglink-384. Trained using image size of 384x384, the same image size as the paper. The Hmean is comparable to the result reported in the paper.

The hust_orientedText is the result of paper.

  1. seglink-512. Trainied using image size of 512x512, and one pointer better than 384x384.

They have been trained:

  • on Synthtext for about 20W iterations, and on IC15-train for 10w~20W iterations.

  • learning_rate = 10e-4

  • two gpus

  • 384: GTX 1080, batch_size = 24; 512: Titan, batch_size = 20

Both models perform best at seg_conf_threshold=0.8 and link_conf_threshold=0.5, well, another difference from paper, which takes 0.9 and 0.7 respectively.

Test Your own images

Use the script test_seglink.py, and a shortcut has been created in script test.sh:

Go to the seglink root directory and execute the command:


./scripts/test.sh 0 GPU_ID CKPT_PATH DATASET_DIR

For example:


./scripts/test.sh 0 ~/models/seglink/model.ckpt-217867  ~/dataset/ICDAR2015/Challenge4/ch4_training_images

I have only tested my models on IC15-test, but any other images can be used for test: just put your images into a directory, and config the path in the command as DATASET_DIR.

A bunch of txt files and a zip file is created after test. If you are using IC15-test for testing, you can upload this zip file to the icdar evaluation server directly.

The text files and placed in a subdir of the checkpoint directory, and contain the bounding boxes as the detection results, and can visualized using the script visualize_detection_result.py.

The command looks like:


python visualize_detection_result.py \

    --image=where your images are put

    --det=the directory of the text files output by test_seglink.py

    --output=the output directory of detection results drawn on images.

For example:


python visualize_detection_result.py \

    --image=~/dataset/ICDAR2015/Challenge4/ch4_training_images/ \

    --det=~/models/seglink/seglink_icdar2015_without_ignored/eval/icdar2015_train/model.ckpt-72885/seg_link_conf_th_0.900000_0.700000/txt \
    --output=~/temp/no-use/seglink_result_512_train

Training and evaluation

The training processing requires data processing, i.e. converting data into tfrecords. The converting scripts are put in the datasets directory. The scrips:train_seglink.py and eval_seglink.py are the training and evaluation scripts respectively. Especially, I have implemented an offline evaluation function, which calculates the Recall/Precision/Hmean as the ICDAR test server, and can be used for cross validation and grid search. However, the resulting scores may have slight differences from those of test sever, but it does not matter that much. Sorry for the imcomplete documentation here. Read and modify them if you want to train your own model.

Some Comments

Thanks should be given to the authors of the Seglink paper, i.e., Baoguang Shi1 Xiang Bai1, Serge Belongie.

EAST is another paper on text detection accepted by CVPR 2017, and its reported result is better than that of SegLink. But if they both use same VGG16, their performances are quite similar.

Contact me if you have any problems, through github issues.

Some Notes On Implementation Detail

How the groundtruth is calculated, in Chinese: http://fromwiz.com/share/s/34GeEW1RFx7x2iIM0z1ZXVvc2yLl5t2fTkEg2ZVhJR2n50xg

Owner
dengdan
Master on CS, from Zhejiang University; Now, perception algorithm R&D in FABU.ai, on automous driving
dengdan
Slice a single image into multiple pieces and create a dataset from them

OpenCV Image to Dataset Converter Slice a single image of Persian digits into mu

Meysam Parvizi 14 Dec 29, 2022
(CVPR 2021) ST3D: Self-training for Unsupervised Domain Adaptation on 3D Object Detection

ST3D Code release for the paper ST3D: Self-training for Unsupervised Domain Adaptation on 3D Object Detection, CVPR 2021 Authors: Jihan Yang*, Shaoshu

CVMI Lab 224 Dec 28, 2022
Omdena-abuja-anpd - Automatic Number Plate Detection for the security of lives and properties using Computer Vision.

Omdena-abuja-anpd - Automatic Number Plate Detection for the security of lives and properties using Computer Vision.

Abdulazeez Jimoh 1 Jan 01, 2022
Autonomous Driving project for Euro Truck Simulator 2

hope-autonomous-driving Autonomous Driving project for Euro Truck Simulator 2 Video: How is it working ? In this video, the program processes the imag

Umut Görkem Kocabaş 36 Nov 06, 2022
Geometric Augmentation for Text Image

Text Image Augmentation A general geometric augmentation tool for text images in the CVPR 2020 paper "Learn to Augment: Joint Data Augmentation and Ne

Canjie Luo 440 Jan 05, 2023
Open Source Differentiable Computer Vision Library for PyTorch

Kornia is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer

kornia 7.6k Jan 04, 2023
ARU-Net - Deep Learning Chinese Word Segment

ARU-Net: A Neural Pixel Labeler for Layout Analysis of Historical Documents Contents Introduction Installation Demo Training Introduction This is the

128 Sep 12, 2022
Image processing is one of the most common term in computer vision

Image processing is one of the most common term in computer vision. Computer vision is the process by which computers can understand images and videos, and how they are stored, manipulated, and retri

Happy N. Monday 3 Feb 15, 2022
A python screen recorder for low-end computers, provides high quality video output.

RecorderX - v1.0 A screen recorder made in Python with the help of OpenCv, it has ability to record your screen in high quality. No matter what your P

Priyanshu Jindal 4 Nov 10, 2021
Just a script for detecting the lanes in any car game (not just gta 5) with specific resolution and road design ( very basic and limited )

GTA-5-Lane-detection Just a script for detecting the lanes in any car game (not just gta 5) with specific resolution and road design ( very basic and

Danciu Georgian 4 Aug 01, 2021
Generate a list of papers with publicly available source code in the daily arxiv

2021-06-08 paper code optimal network slicing for service-oriented networks with flexible routing and guaranteed e2e latency networkslicing multi-moda

79 Jan 03, 2023
Extracting Tables from Document Images using a Multi-stage Pipeline for Table Detection and Table Structure Recognition:

Multi-Type-TD-TSR Check it out on Source Code of our Paper: Multi-Type-TD-TSR Extracting Tables from Document Images using a Multi-stage Pipeline for

Pascal Fischer 178 Dec 27, 2022
Multi-Oriented Scene Text Detection via Corner Localization and Region Segmentation

This is the official implementation of "Multi-Oriented Scene Text Detection via Corner Localization and Region Segmentation". For more details, please

Pengyuan Lyu 309 Dec 06, 2022
OpenCV-Erlang/Elixir bindings

evision [WIP] : OS : arch Build Status Ubuntu 20.04 arm64 Ubuntu 20.04 armv7 Ubuntu 20.04 s390x Ubuntu 20.04 ppc64le Ubuntu 20.04 x86_64 macOS 11 Big

Cocoa 194 Jan 05, 2023
This is a Computer vision package that makes its easy to run Image processing and AI functions. At the core it uses OpenCV and Mediapipe libraries.

CVZone This is a Computer vision package that makes its easy to run Image processing and AI functions. At the core it uses OpenCV and Mediapipe librar

CVZone 648 Dec 30, 2022
利用Paddle框架复现CRAFT

CRAFT-Paddle 利用Paddle框架复现CRAFT CRAFT 本项目基于paddlepaddle框架复现CRAFT,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: CRAFT: Character-Region Awarenes

QuanHao Guo 2 Mar 07, 2022
天池2021"全球人工智能技术创新大赛"【赛道一】:医学影像报告异常检测 - 第三名解决方案

天池2021"全球人工智能技术创新大赛"【赛道一】:医学影像报告异常检测 比赛链接 个人博客记录 目录结构 ├── final------------------------------------决赛方案PPT ├── preliminary_contest--------------------

19 Aug 17, 2022
A simple QR-Code Reader in Python

A simple QR-Code Reader written in Python, that copies the content of a QR-Code directly into the copy clipboard.

Eric 1 Oct 28, 2021
CRAFT-Pyotorch:Character Region Awareness for Text Detection Reimplementation for Pytorch

CRAFT-Reimplementation Note:If you have any problems, please comment. Or you can join us weChat group. The QR code will update in issues #49 . Reimple

453 Dec 28, 2022
Augmenting Anchors by the Detector Itself

Augmenting Anchors by the Detector Itself Introduction It is difficult to determine the scale and aspect ratio of anchors for anchor-based object dete

4 Nov 06, 2022