Official PyTorch implementation of "The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person Pose Estimation" (ICCV 21).

Overview

CenterGroup

This the official implementation of our ICCV 2021 paper

The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person Pose Estimation,
Method Visualization Guillem Brasó, Nikita Kister, Laura Leal-Taixé
We introduce CenterGroup, an attention-based framework to estimate human poses from a set of identity-agnostic keypoints and person center predictions in an image. Our approach uses a transformer to obtain context-aware embeddings for all detected keypoints and centers and then applies multi-head attention to directly group joints into their corresponding person centers. While most bottom-up methods rely on non-learnable clustering at inference, CenterGroup uses a fully differentiable attention mechanism that we train end-to-end together with our keypoint detector. As a result, our method obtains state-of-the-art performance with up to 2.5x faster inference time than competing bottom-up methods.

@article{Braso_2021_ICCV,
    author    = {Bras\'o, Guillem and Kister, Nikita and Leal-Taix\'e, Laura},
    title     = {The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person Pose Estimation},
    journal = {ICCV},
    year      = {2021}
}

Main Results

With the code contained in this repo, you should be able to reproduce the following results.

Results on COCO val2017

Method Detector Multi-Scale Test Input size AP AP.5 AP .75 AP (M) AP (L)
CenterGroup HigherHRNet-w32 512 69.0 87.7 74.4 59.9 75.3
CenterGroup HigherHRNet-w48 640 71.0 88.7 76.5 63.1 75.2
CenterGroup HigherHRNet-w32 512 71.9 89.0 78.0 63.7 77.4
CenterGroup HigherHRNet-w48 640 73.3 89.7 79.2 66.4 76.7

Results on COCO test2017

Method Detector Multi-Scale Test Input size AP AP .5 AP .75 AP (M) AP (L)
CenterGroup HigherHRNet-w32 512 67.6 88.6 73.6 62.0 75.6
CenterGroup HigherHRNet-w48 640 69.5 89.7 76.0 65.0 76.2
CenterGroup HigherHRNet-w32 512 70.3 90.0 76.9 65.4 77.5
CenterGroup HigherHRNet-w48 640 71.4 90.5 78.1 67.2 77.5

Results on CrowdPose test

Method Detector Multi-Scale Test Input size AP AP .5 AP .75 AP (E) AP (M) AP (H)
CenterGroup HigherHRNet-w48 640 67.6 87.6 72.7 74.2 68.1 61.1
CenterGroup HigherHRNet-w48 640 70.3 89.1 75.7 77.3 70.8 63.2

Installation

Please see docs/INSTALL.md

Model Zoo

Please see docs/MODEL_ZOO.md

Evaluation

To evaluate a model you have to specify its configuration file, its checkpoint, and the number of GPUs you want to use. All of our configurations and checkpoints are available here) For example, to run CenterGroup with a HigherHRNet32 detector and a single GPU you can run the following:

NUM_GPUS=1
./tools/dist_test.sh configs/centergroup2/coco/higherhrnet_w32_coco_512x512 models/centergroup/centergroup_higherhrnet_w32_coco_512x512.pth $NUM_GPUS 1234

If you want to use multi-scale testing, please add the --multi-scale flag, e.g.:

./tools/dist_test.sh configs/centergroup2/coco/higherhrnet_w32_coco_512x512 models/centergroup/centergroup_higherhrnet_w32_coco_512x512.pth $NUM_GPUS 1234 --multi-scale

You can also modify any other config entry with the --cfg-options entry. For example, to disable flip-testing, which is used by default, you can run:

./tools/dist_test.sh configs/centergroup2/coco/higherhrnet_w32_coco_512x512 models/centergroup/centergroup_higherhrnet_w32_coco_512x512.pth $NUM_GPUS 1234 --cfg-options model.test_cfg.flip_test=False

You may need to modify the checkpoint's path, depending on where you downloaded it, and the entry data_root in the config file, depending on where you stored your data.

Training HigherHRNet with Centers

TODO

Training CenterGroup

TODO

Demo

TODO

Acknowledgements

Our code is based on mmpose, which reimplemented HigherHRNet's work. We thank the authors of these codebases for their great work!

Owner
Dynamic Vision and Learning Group
Dynamic Vision and Learning Group
Generalized Random Forests

generalized random forests A pluggable package for forest-based statistical estimation and inference. GRF currently provides non-parametric methods fo

GRF Labs 781 Dec 25, 2022
Keras-1D-ACGAN-Data-Augmentation

Keras-1D-ACGAN-Data-Augmentation What is the ACGAN(Auxiliary Classifier GANs) ? Related Paper : [Abstract : Synthesizing high resolution photorealisti

Jae-Hoon Shim 7 Dec 23, 2022
An implementation of "Learning human behaviors from motion capture by adversarial imitation"

Merel-MoCap-GAIL An implementation of Merel et al.'s paper on generative adversarial imitation learning (GAIL) using motion capture (MoCap) data: Lear

Yu-Wei Chao 34 Nov 12, 2022
QAHOI: Query-Based Anchors for Human-Object Interaction Detection (paper)

QAHOI QAHOI: Query-Based Anchors for Human-Object Interaction Detection (paper) Requirements PyTorch = 1.5.1 torchvision = 0.6.1 pip install -r requ

38 Dec 29, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Dec 28, 2022
Deduplicating Training Data Makes Language Models Better

Deduplicating Training Data Makes Language Models Better This repository contains code to deduplicate language model datasets as descrbed in the paper

Google Research 431 Dec 27, 2022
Pretrained language model and its related optimization techniques developed by Huawei Noah's Ark Lab.

Pretrained Language Model This repository provides the latest pretrained language models and its related optimization techniques developed by Huawei N

HUAWEI Noah's Ark Lab 2.6k Jan 01, 2023
Official implementation of the method ContIG, for self-supervised learning from medical imaging with genomics

ContIG: Self-supervised Multimodal Contrastive Learning for Medical Imaging with Genetics This is the code implementation of the paper "ContIG: Self-s

Digital Health & Machine Learning 22 Dec 13, 2022
Conversion between units used in magnetism

convmag Conversion between various units used in magnetism The conversions between base units available are: T - G : 1e4

0 Jul 15, 2021
As-ViT: Auto-scaling Vision Transformers without Training

As-ViT: Auto-scaling Vision Transformers without Training [PDF] Wuyang Chen, Wei Huang, Xianzhi Du, Xiaodan Song, Zhangyang Wang, Denny Zhou In ICLR 2

VITA 68 Sep 05, 2022
AOT-GAN for High-Resolution Image Inpainting (codebase for image inpainting)

AOT-GAN for High-Resolution Image Inpainting Arxiv Paper | AOT-GAN: Aggregated Contextual Transformations for High-Resolution Image Inpainting Yanhong

Multimedia Research 214 Jan 03, 2023
Semantic Segmentation with Pytorch-Lightning

This is a simple demo for performing semantic segmentation on the Kitti dataset using Pytorch-Lightning and optimizing the neural network by monitoring and comparing runs with Weights & Biases.

Boris Dayma 58 Nov 18, 2022
On the model-based stochastic value gradient for continuous reinforcement learning

On the model-based stochastic value gradient for continuous reinforcement learning This repository is by Brandon Amos, Samuel Stanton, Denis Yarats, a

Facebook Research 46 Dec 15, 2022
Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor.

Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor. It is devel

33 Nov 11, 2022
WSDM2022 Challenge - Large scale temporal graph link prediction

WSDM 2022 Large-scale Temporal Graph Link Prediction - Baseline and Initial Test Set WSDM Cup Website link Link to this challenge This branch offers A

Deep Graph Library 34 Dec 29, 2022
Unified API to facilitate usage of pre-trained "perceptor" models, a la CLIP

mmc installation git clone https://github.com/dmarx/Multi-Modal-Comparators cd 'Multi-Modal-Comparators' pip install poetry poetry build pip install d

David Marx 37 Nov 25, 2022
Scripts and outputs related to the paper Prediction of Adverse Biological Effects of Chemicals Using Knowledge Graph Embeddings.

Knowledge Graph Embeddings and Chemical Effect Prediction, 2020. Scripts and outputs related to the paper Prediction of Adverse Biological Effects of

Knowledge Graphs at the Norwegian Institute for Water Research 1 Nov 01, 2021
Official implementation for the paper "Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection"

Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection PyTorch code release of the paper "Attentive Prototypes for Sour

Deepti Hegde 23 Oct 17, 2022
PyTorch implementation for the ICLR 2020 paper "Understanding the Limitations of Variational Mutual Information Estimators"

Smoothed Mutual Information ``Lower Bound'' Estimator PyTorch implementation for the ICLR 2020 paper Understanding the Limitations of Variational Mutu

50 Nov 09, 2022
Offcial implementation of "A Hybrid Video Anomaly Detection Framework via Memory-Augmented Flow Reconstruction and Flow-Guided Frame Prediction, ICCV-2021".

HF2-VAD Offcial implementation of "A Hybrid Video Anomaly Detection Framework via Memory-Augmented Flow Reconstruction and Flow-Guided Frame Predictio

76 Dec 21, 2022