Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

Overview

Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

This is the official implementation of our paper Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR), which has been accepted by WSDM2022.

Cold-start problem is still a very challenging problem in recommender systems. Fortunately, the interactions of the cold-start users in the auxiliary source domain can help cold-start recommendations in the target domain. How to transfer user's preferences from the source domain to the target domain, is the key issue in Cross-domain Recommendation (CDR) which is a promising solution to deal with the cold-start problem. Most existing methods model a common preference bridge to transfer preferences for all users. Intuitively, since preferences vary from user to user, the preference bridges of different users should be different. Along this line, we propose a novel framework named Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR). Specifically, a meta network fed with users' characteristic embeddings is learned to generate personalized bridge functions to achieve personalized transfer of preferences for each user. To learn the meta network stably, we employ a task-oriented optimization procedure. With the meta-generated personalized bridge function, the user's preference embedding in the source domain can be transformed into the target domain, and the transformed user preference embedding can be utilized as the initial embedding for the cold-start user in the target domain. Using large real-world datasets, we conduct extensive experiments to evaluate the effectiveness of PTUPCDR on both cold-start and warm-start stages.

Requirements

  • Python 3.6
  • Pytorch > 1.0
  • tensorflow
  • Pandas
  • Numpy
  • Tqdm

File Structure

.
├── code
│   ├── config.json         # Configurations
│   ├── entry.py            # Entry function
│   ├── models.py           # Models based on MF, GMF or Youtube DNN
│   ├── preprocessing.py    # Parsing and Segmentation
│   ├── readme.md
│   └── run.py              # Training and Evaluating 
└── data
    ├── mid                 # Mid data
    │   ├── Books.csv
    │   ├── CDs_and_Vinyl.csv
    │   └── Movies_and_TV.csv
    ├── raw                 # Raw data
    │   ├── reviews_Books_5.json.gz
    │   ├── reviews_CDs_and_Vinyl_5.json.gz
    │   └── reviews_Movies_and_TV_5.json.gz
    └── ready               # Ready to use
        ├── _2_8
        ├── _5_5
        └── _8_2

Dataset

We utilized the Amazon Reviews 5-score dataset. To download the Amazon dataset, you can use the following link: Amazon Reviews or Google Drive. Download the three domains: Music, Movies, Books (5-scores), and then put the data in ./data/raw.

You can use the following command to preprocess the dataset. The two-phase data preprocessing includes parsing the raw data and segmenting the mid data. The final data will be under ./data/ready.

python entry.py --process_data_mid 1 --process_data_ready 1

Run

Parameter Configuration:

  • task: different tasks within 1, 2 or 3, default for 1
  • base_model: different base models within MF, GMF or DNN, default for MF
  • ratio: train/test ratio within [0.8, 0.2], [0.5, 0.5] or [0.2, 0.8], default for [0.8, 0.2]
  • epoch: pre-training and CDR mapping training epoches, default for 10
  • seed: random seed, default for 2020
  • gpu: the index of gpu you will use, default for 0
  • lr: learning_rate, default for 0.01
  • model_name: base model for embedding, default for MF

You can run this model through:

# Run directly with default parameters 
python entry.py

# Reset training epoch to `10`
python entry.py --epoch 20

# Reset several parameters
python entry.py --gpu 1 --lr 0.02

# Reset seed (we use seed in[900, 1000, 10, 2020, 500])
python entry.py --seed 900

If you wanna try different weight decay, meta net dimension, embedding dimmension or more tasks, you may change the settings in ./code/config.json. Note that this repository consists of our PTUPCDR and three baselines, TGTOnly, CMF, and EMCDR.

Reference

Zhu Y, Tang Z, Liu Y, et al. Personalized Transfer of User Preferences for Cross-domain Recommendation[C]. The 15th ACM International Conference on Web Search and Data Mining, 2022.

or in bibtex style:

@inproceedings{zhu2022ptupcdr,
  title={Personalized Transfer of User Preferences for Cross-domain Recommendation},
  author={Zhu, Yongchun and Tang, Zhenwei and Liu, Yudan and Zhuang, Fuzhen, and Xie, Ruobing and Zhang, Xu and Lin, Leyu and He, Qing},
  inproceedings={The 15th ACM International Conference on Web Search and Data Mining},
  year={2022}
}
Owner
Yongchun Zhu
ICT Yongchun Zhu
Yongchun Zhu
NOMAD - A blackbox optimization software

################################################################################### #

Blackbox Optimization 78 Dec 29, 2022
Compare GAN code.

Compare GAN This repository offers TensorFlow implementations for many components related to Generative Adversarial Networks: losses (such non-saturat

Google 1.8k Jan 05, 2023
TANL: Structured Prediction as Translation between Augmented Natural Languages

TANL: Structured Prediction as Translation between Augmented Natural Languages Code for the paper "Structured Prediction as Translation between Augmen

98 Dec 15, 2022
A python library for implementing a recommender system

python-recsys A python library for implementing a recommender system. Installation Dependencies python-recsys is build on top of Divisi2, with csc-pys

Oscar Celma 1.5k Dec 17, 2022
Python implementation of Bayesian optimization over permutation spaces.

Bayesian Optimization over Permutation Spaces This repository contains the source code and the resources related to the paper "Bayesian Optimization o

Aryan Deshwal 9 Dec 23, 2022
General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends)

General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends). Blazing fast, mobile-enabled, asynchronous and optimized for advanced GPU data processing usec

The Kompute Project 1k Jan 06, 2023
Simple-Neural-Network From Scratch in Python

Simple-Neural-Network From Scratch in Python This is a simple Neural Network created without any Machine Learning Libraries. The only dependencies are

Aum Shah 1 Dec 28, 2021
A Fast Knowledge Distillation Framework for Visual Recognition

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
A Pythonic library for Nvidia Codec.

A Pythonic library for Nvidia Codec. The project is still in active development; expect breaking changes. Why another Python library for Nvidia Codec?

Zesen Qian 12 Dec 27, 2022
This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT).

Dynamic-Vision-Transformer (Pytorch) This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT). Not All Ima

210 Dec 18, 2022
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022
A selection of State Of The Art research papers (and code) on human locomotion (pose + trajectory) prediction (forecasting)

A selection of State Of The Art research papers (and code) on human trajectory prediction (forecasting). Papers marked with [W] are workshop papers.

Karttikeya Manglam 40 Nov 18, 2022
YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with ONNX, TensorRT, ncnn, and OpenVINO supported.

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

7.7k Jan 03, 2023
Implement of homography net by pytorch

HomographyNet Implement of homography net by pytorch Brief Introduction This project is based on the work Homography-Net: @article{detone2016deep, t

ronghao_CN 4 May 19, 2022
Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021

PLOME:Pre-training with Misspelled Knowledge for Chinese Spelling Correction (ACL2021) This repository provides the code and data of the work in ACL20

197 Nov 26, 2022
Tacotron 2 - PyTorch implementation with faster-than-realtime inference

Tacotron 2 (without wavenet) PyTorch implementation of Natural TTS Synthesis By Conditioning Wavenet On Mel Spectrogram Predictions. This implementati

NVIDIA Corporation 4.1k Jan 03, 2023
Matthew Colbrook 1 Apr 08, 2022
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

Christoph Reich 23 Sep 21, 2022
Code for BMVC2021 paper "Boundary Guided Context Aggregation for Semantic Segmentation"

Boundary-Guided-Context-Aggregation Boundary Guided Context Aggregation for Semantic Segmentation Haoxiang Ma, Hongyu Yang, Di Huang In BMVC'2021 Pape

Haoxiang Ma 31 Jan 08, 2023
A New Approach to Overgenerating and Scoring Abstractive Summaries

We provide the source code for the paper "A New Approach to Overgenerating and Scoring Abstractive Summaries" accepted at NAACL'21. If you find the code useful, please cite the following paper.

Kaiqiang Song 4 Apr 03, 2022