Linear image-to-image translation

Overview

Linear (Un)supervised Image-to-Image Translation

Teaser image Examples for linear orthogonal transformations in PCA domain, learned without pairing supervision. Training time is about 1 minute.

This repository contains the official pytorch implementation of the following paper:

The Surprising Effectiveness of Linear Unsupervised Image-to-Image Translation
Eitan Richardson and Yair Weiss
https://arxiv.org/abs/2007.12568

Abstract: Unsupervised image-to-image translation is an inherently ill-posed problem. Recent methods based on deep encoder-decoder architectures have shown impressive results, but we show that they only succeed due to a strong locality bias, and they fail to learn very simple nonlocal transformations (e.g. mapping upside down faces to upright faces). When the locality bias is removed, the methods are too powerful and may fail to learn simple local transformations. In this paper we introduce linear encoder-decoder architectures for unsupervised image to image translation. We show that learning is much easier and faster with these architectures and yet the results are surprisingly effective. In particular, we show a number of local problems for which the results of the linear methods are comparable to those of state-of-the-art architectures but with a fraction of the training time, and a number of nonlocal problems for which the state-of-the-art fails while linear methods succeed.

TODO:

  • Code for reproducing the linear image-to-image translation results
  • Code for applying the linear transformation as regularization for deep unsupervisd image-to-image (based on ALAE)
  • Support for user-provided dataset (e.g. image folders)
  • Automatic detection of available GPU resources

Requirements

  • Pytorch (tested with pytorch 1.5.0)
  • faiss (tested with faiss 1.6.3 with GPU support)
  • OpenCV (used only for generating some of the synthetic transformations)

System Requirements

Both the PCA and the nearest-neighbors search in ICP are performed on GPU (using pytorch and faiss). A cuda-enabled GPU with at least 11 GB of RAM is recommended. Since the entire data is loaded to RAM (not in mini-batches), a lot of (CPU) RAM is required as well ...

Code structure

  • run_im2im.py: The main python script for training and testing the linear transformation
  • pca-linear-map.py: The main algorithm. Performs PCA for the two domains, resolves polarity ambiguity and learnes an orthogonal or unconstrained linear transformation. In the unpaired case, ICP iterations are used to find the best correspondence.
  • pca.py: Fast PCA using pytorch and the skewness-based polarity synchronization.
  • utils.py: Misc utils
  • data.py: Loading the dataset and applying the synthetic transformations

Preparing the datasets

The repository does not contain code for loading the datasets, however, the tested datasets were loaded in their standard format. Please download (or link) the datasets under datasets/CelebA, datasets/FFHQ and datasets/edges2shoes.

Learning a linear transformation

usage: run_im2im.py [--dataset {celeba,ffhq,shoes}]
                    [--resolution RESOLUTION]
                    [--a_transform {identity,rot90,vflip,edges,Canny-edges,colorize,super-res,inpaint}]
                    [--pairing {paired,matching,nonmatching,few-matches}]
                    [--matching {nn,cyc-nn}]
                    [--transform_type {orthogonal,linear}] [--n_iters N_ITERS]
                    [--n_components N_COMPONENTS] [--n_train N_TRAIN]
                    [--n_test N_TEST]

Results are saved into the results folder.

Command example for generating the colorization result in the above image (figure 9 in tha paper):

python3 run_im2im.py --dataset ffhq --resolution 128 --a_transform colorize --n_components 2000 --n_train 20000 --n_test 25
Loading matching data for ffhq - colorize ...
100%|██████████████████████████████████████████████████████████████████████████| 20000/20000 [00:04<00:00, 4549.19it/s]
100%|█████████████████████████████████████████████████████████████████████████████████| 25/25 [00:00<00:00, 299.33it/s]
Learning orthogonal transformation in 2000 PCA dimensions...
Got 20000 samples in A and 20000 in B.
PCA A...
PCA B...
Synchronizing...
Using skew-based logic for 1399/2000 dimensions.
PCA representations:  (20000, 2000) (20000, 2000) took: 68.09504985809326
Learning orthogonal transformation using matching sets:
Iter 0: 4191 B-NNs / 1210 consistent, mean NN l2 = 1308.520. took 2.88 sec.
Iter 1: 19634 B-NNs / 19634 consistent, mean NN l2 = 607.715. took 3.46 sec.
Iter 2: 19801 B-NNs / 19801 consistent, mean NN l2 = 204.487. took 3.49 sec.
Iter 3: 19801 B-NNs / 19801 consistent, mean NN l2 = 204.079. Converged - terminating ICP iterations.
Applying the learned transformation on test data...

Limitations

As described in the paper:

  • If the true translation is very non-linear, the learned linear transformation will not model it well.
  • If the image domain has a very complex structure, a large number of PCA coefficients will be required to achieve high quality reconstruction.
  • The nonmatching case (i.e. no matching paires exist) requires larger training sets.

Additional results

Paired

In the two examples above (edge images to real images and inpainting with a relative large part of the image missing), the true transformation is quite nonlinear, making the learned linear transformation less suitable. Here we used the unconstrained linear transformation rather than the orthogonal one. In addition, pairing supervision was used.

NonFaces

Here is an example showing the linear transformation method applied to a different domain (not just aligned faces).

Owner
Eitan Richardson
PhD student and TA at the Hebrew University of Jerusalem / Research Intern at Google
Eitan Richardson
Source Code for ICSE 2022 Paper - ``Can We Achieve Fairness Using Semi-Supervised Learning?''

Fair-SSL Source Code for ICSE 2022 Paper - Can We Achieve Fairness Using Semi-Supervised Learning? Ethical bias in machine learning models has become

1 Dec 18, 2021
The official repository for "Intermediate Layers Matter in Momentum Contrastive Self Supervised Learning" paper.

Intermdiate layer matters - SSL The official repository for "Intermediate Layers Matter in Momentum Contrastive Self Supervised Learning" paper. Downl

Aakash Kaku 35 Sep 19, 2022
Code for AA-RMVSNet: Adaptive Aggregation Recurrent Multi-view Stereo Network (ICCV 2021).

AA-RMVSNet Code for AA-RMVSNet: Adaptive Aggregation Recurrent Multi-view Stereo Network (ICCV 2021) in PyTorch. paper link: arXiv | CVF Change Log Ju

Qingtian Zhu 97 Dec 30, 2022
Restricted Boltzmann Machines in Python.

How to Use First, initialize an RBM with the desired number of visible and hidden units. rbm = RBM(num_visible = 6, num_hidden = 2) Next, train the m

Edwin Chen 928 Dec 30, 2022
PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization using Augmented-Self Reference and Dense Semantic Correspondence) and pre-trained model on ImageNet dataset

Reference-Based-Sketch-Image-Colorization-ImageNet This is a PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization usin

Yuzhi ZHAO 11 Jul 28, 2022
A robotic arm that mimics hand movement through MediaPipe tracking.

La-Z-Arm A robotic arm that mimics hand movement through MediaPipe tracking. Hardware NVidia Jetson Nano Sparkfun Pi Servo Shield Micro Servos Webcam

Alfred 1 Jun 05, 2022
Decision Transformer: A brand new Offline RL Pattern

DecisionTransformer_StepbyStep Intro Decision Transformer: A brand new Offline RL Pattern. 这是关于NeurIPS 2021 热门论文Decision Transformer的复现。 👍 原文地址: Deci

Irving 14 Nov 22, 2022
An implementation of IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification

IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification The repostiory consists of the code, results and data set links for

12 Dec 26, 2022
[ACM MM 2021] Yes, "Attention is All You Need", for Exemplar based Colorization

Transformer for Image Colorization This is an implemention for Yes, "Attention Is All You Need", for Exemplar based Colorization, and the current soft

Wang Yin 30 Dec 07, 2022
ADB-IP-ROTATION - Use your mobile phone to gain a temporary IP address using ADB and data tethering

ADB IP ROTATE This an Python script based on Android Debug Bridge (adb) shell sc

Dor Bismuth 2 Jul 12, 2022
git《Tangent Space Backpropogation for 3D Transformation Groups》(CVPR 2021) GitHub:1]

LieTorch: Tangent Space Backpropagation Introduction The LieTorch library generalizes PyTorch to 3D transformation groups. Just as torch.Tensor is a m

Princeton Vision & Learning Lab 482 Jan 06, 2023
A Dataset of Python Challenges for AI Research

Python Programming Puzzles (P3) This repo contains a dataset of python programming puzzles which can be used to teach and evaluate an AI's programming

Microsoft 850 Dec 24, 2022
Highway networks implemented in PyTorch.

PyTorch Highway Networks Highway networks implemented in PyTorch. Just the MNIST example from PyTorch hacked to work with Highway layers. Todo Make th

Conner Vercellino 56 Dec 14, 2022
Data pipelines for both TensorFlow and PyTorch!

rapidnlp-datasets Data pipelines for both TensorFlow and PyTorch ! If you want to load public datasets, try: tensorflow/datasets huggingface/datasets

1 Dec 08, 2021
Learning-Augmented Dynamic Power Management

Learning-Augmented Dynamic Power Management This repository contains source code accompanying paper Learning-Augmented Dynamic Power Management with M

Adam 0 Feb 22, 2022
[CVPR 2020] Local Class-Specific and Global Image-Level Generative Adversarial Networks for Semantic-Guided Scene Generation

Contents Local and Global GAN Cross-View Image Translation Semantic Image Synthesis Acknowledgments Related Projects Citation Contributions Collaborat

Hao Tang 131 Dec 07, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023
Official PyTorch implementation of "Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks" (AAAI 2022)

Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks This is the code for reproducing the results of th

2 Dec 27, 2021
Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021)

Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021) By Jinhyung Park, Dohae Lee, In-Kwon Lee from Yonsei University (Seoul,

Jinhyung Park 0 Jan 09, 2022
Learning Saliency Propagation for Semi-supervised Instance Segmentation

Learning Saliency Propagation for Semi-supervised Instance Segmentation PyTorch Implementation This repository contains: the PyTorch implementation of

Berkeley DeepDrive 68 Oct 18, 2022