Numerical-computing-is-fun - Learning numerical computing with notebooks for all ages.

Overview

As much as this series is to educate aspiring computer programmers and data scientists of all ages and all backgrounds, it is also a reminder to myself. After playing with computers and numbers for nearly 4 decades, I've also made this to keep in mind how to have fun with computers and maths.

Using Jupyter notebooks as an interactive learning medium, this series provides an introduction to:

  • Computer Science
  • Python programming language
  • Numerical computing
  • Numbers theory
  • Prime numbers
  • Data visualization
  • Deep learning

Interactive in Mybinder:

Binder

Interative in Azure (requires logging in):

Static in Nbviewer:

Use the link provided for each part below the corresponding title.

Launch in Binder (no login required)

Click the badge in the corresponding part below.

Part 1 : Introduction

Start learning here or

Binder

What you will learn:

  • print is the command to print something on the screen
  • Math operations are very easy to perform in Python
  • Python deals with numbers based on data types
  • In Python there are two numerical data types; int and float
  • Functions are powerful tools to easily perform various operations
  • Functions may accept arguments (parameters) as input
  • Functions are computer processes, and arguments are what is being processed
  • It's very easy to create your own functions

Part 2 : Prime Numbers

Continue learning here.

Binder

What you will learn:

  • Prime numbers relate with divisibility
  • Divisibility means that when one number is divided by other, the product is not a whole number
  • A prime number is any number that is divisible only by itself and 1
  • Binary means 0 and 1
  • Boolean logic is the binary language of computers
  • Python gives us an easy to use way to instruct computers
  • Boolean logic statements involve is, is not, and and or statements
  • Boolean statements can be joined together
  • Boolean statements always return either True or False as output
  • It's easy to perform computing operations with small numbers
  • The biggest prime number is a really big number
  • Very big numbers require vast networks of computers joined together

Part 3 : Algorithms Overview

Continue learning here.

Binder

What you will learn:

  • Algoritms are like insides of factories
  • Algoritms process inputs to produce outputs
  • Conditional statements are a tool for putting boolean logic in to action
  • Conditional statements are part of "flow control"
  • Flow controls give us the ability to create rules for computer programs
  • The three conditional statements in Python are if, else and elif
  • Even just if alone can be used to create a conditional statement

Part 4: Automation Overview

Continue learning here.

Binder

What you will learn:

  • Generally speaking computer programs are focused on process automation
  • Loops are a highly effective method for automation
  • With small changes to our code, we can make big improvements in capability
  • Sometimes we can get more done with less code!
  • It's very convinient to store values in to memory
  • Computer memory is nothing like human memory, and also not like a safe deposit box
  • Any value can be stored in to memory
  • Numbers can be automatically generated with range function
  • It's meaningful to learn new concepts by gradually improving things

CREDITS

Numerical Computing is Fun is an Eka Foundation project.

Owner
EKA foundation
EKA foundation
Resources related to EMNLP 2021 paper "FAME: Feature-Based Adversarial Meta-Embeddings for Robust Input Representations"

FAME: Feature-based Adversarial Meta-Embeddings This is the companion code for the experiments reported in the paper "FAME: Feature-Based Adversarial

Bosch Research 11 Nov 27, 2022
Source code for our CVPR 2019 paper - PPGNet: Learning Point-Pair Graph for Line Segment Detection

PPGNet: Learning Point-Pair Graph for Line Segment Detection PyTorch implementation of our CVPR 2019 paper: PPGNet: Learning Point-Pair Graph for Line

SVIP Lab 170 Oct 25, 2022
Library of various Few-Shot Learning frameworks for text classification

FewShotText This repository contains code for the paper A Neural Few-Shot Text Classification Reality Check Environment setup # Create environment pyt

Thomas Dopierre 47 Jan 03, 2023
Sequential Model-based Algorithm Configuration

SMAC v3 Project Copyright (C) 2016-2018 AutoML Group Attention: This package is a reimplementation of the original SMAC tool (see reference below). Ho

AutoML-Freiburg-Hannover 778 Jan 05, 2023
UniFormer - official implementation of UniFormer

UniFormer This repo is the official implementation of "Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning". It curren

SenseTime X-Lab 573 Jan 04, 2023
Official pytorch implementation of Rainbow Memory (CVPR 2021)

Rainbow Memory: Continual Learning with a Memory of Diverse Samples

Clova AI Research 91 Dec 17, 2022
Hough Transform and Hough Line Transform Using OpenCV

Hough transform is a feature extraction method for detecting simple shapes such as circles, lines, etc in an image. Hough Transform and Hough Line Transform is implemented in OpenCV with two methods;

Happy N. Monday 3 Feb 15, 2022
The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

Sun Yi 201 Nov 21, 2022
PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids

PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids The electric grid is a key enabling infrastructure for the a

Texas A&M Engineering Research 19 Jan 07, 2023
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Ubisoft 76 Dec 30, 2022
Implementation of the HMAX model of vision in PyTorch

PyTorch implementation of HMAX PyTorch implementation of the HMAX model that closely follows that of the MATLAB implementation of The Laboratory for C

Marijn van Vliet 52 Oct 13, 2022
Python Implementation of algorithms in Graph Mining, e.g., Recommendation, Collaborative Filtering, Community Detection, Spectral Clustering, Modularity Maximization, co-authorship networks.

Graph Mining Author: Jiayi Chen Time: April 2021 Implemented Algorithms: Network: Scrabing Data, Network Construbtion and Network Measurement (e.g., P

Jiayi Chen 3 Mar 03, 2022
Code for CVPR2021 paper 'Where and What? Examining Interpretable Disentangled Representations'.

PS-SC GAN This repository contains the main code for training a PS-SC GAN (a GAN implemented with the Perceptual Simplicity and Spatial Constriction c

Xinqi/Steven Zhu 40 Dec 16, 2022
Flybirds - BDD-driven natural language automated testing framework, present by Trip Flight

Flybird | English Version 行为驱动开发(Behavior-driven development,缩写BDD),是一种软件过程的思想或者

Ctrip, Inc. 706 Dec 30, 2022
A Python wrapper for Google Tesseract

Python Tesseract Python-tesseract is an optical character recognition (OCR) tool for python. That is, it will recognize and "read" the text embedded i

Matthias A Lee 4.6k Jan 05, 2023
Modular Probabilistic Programming on MXNet

MXFusion | | | | Tutorials | Documentation | Contribution Guide MXFusion is a modular deep probabilistic programming library. With MXFusion Modules yo

Amazon 100 Dec 10, 2022
Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters.

Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters. Overview This project is a Torch implementation for our CVPR 2016 paper

Jianwei Yang 278 Dec 25, 2022
This is a demo app to be used in the video streaming applications

MoViDNN: A Mobile Platform for Evaluating Video Quality Enhancement with Deep Neural Networks MoViDNN is an Android application that can be used to ev

ATHENA Christian Doppler (CD) Laboratory 7 Jul 21, 2022
FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

FairEdit Relevent Publication FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

5 Feb 04, 2022
Code for the preprint "Well-classified Examples are Underestimated in Classification with Deep Neural Networks"

This is a repository for the paper of "Well-classified Examples are Underestimated in Classification with Deep Neural Networks" The implementation and

LancoPKU 25 Dec 11, 2022