A library for Multilingual Unsupervised or Supervised word Embeddings

Related tags

Text Data & NLPMUSE
Overview

MUSE: Multilingual Unsupervised and Supervised Embeddings

Model

MUSE is a Python library for multilingual word embeddings, whose goal is to provide the community with:

  • state-of-the-art multilingual word embeddings (fastText embeddings aligned in a common space)
  • large-scale high-quality bilingual dictionaries for training and evaluation

We include two methods, one supervised that uses a bilingual dictionary or identical character strings, and one unsupervised that does not use any parallel data (see Word Translation without Parallel Data for more details).

Dependencies

MUSE is available on CPU or GPU, in Python 2 or 3. Faiss is optional for GPU users - though Faiss-GPU will greatly speed up nearest neighbor search - and highly recommended for CPU users. Faiss can be installed using "conda install faiss-cpu -c pytorch" or "conda install faiss-gpu -c pytorch".

Get evaluation datasets

To download monolingual and cross-lingual word embeddings evaluation datasets:

  • Our 110 bilingual dictionaries
  • 28 monolingual word similarity tasks for 6 languages, and the English word analogy task
  • Cross-lingual word similarity tasks from SemEval2017
  • Sentence translation retrieval with Europarl corpora

You can simply run:

cd data/
wget https://dl.fbaipublicfiles.com/arrival/vectors.tar.gz
wget https://dl.fbaipublicfiles.com/arrival/wordsim.tar.gz
wget https://dl.fbaipublicfiles.com/arrival/dictionaries.tar.gz

Alternatively, you can also download the data with:

cd data/
./get_evaluation.sh

Note: Requires bash 4. The download of Europarl is disabled by default (slow), you can enable it here.

Get monolingual word embeddings

For pre-trained monolingual word embeddings, we highly recommend fastText Wikipedia embeddings, or using fastText to train your own word embeddings from your corpus.

You can download the English (en) and Spanish (es) embeddings this way:

# English fastText Wikipedia embeddings
curl -Lo data/wiki.en.vec https://dl.fbaipublicfiles.com/fasttext/vectors-wiki/wiki.en.vec
# Spanish fastText Wikipedia embeddings
curl -Lo data/wiki.es.vec https://dl.fbaipublicfiles.com/fasttext/vectors-wiki/wiki.es.vec

Align monolingual word embeddings

This project includes two ways to obtain cross-lingual word embeddings:

  • Supervised: using a train bilingual dictionary (or identical character strings as anchor points), learn a mapping from the source to the target space using (iterative) Procrustes alignment.
  • Unsupervised: without any parallel data or anchor point, learn a mapping from the source to the target space using adversarial training and (iterative) Procrustes refinement.

For more details on these approaches, please check here.

The supervised way: iterative Procrustes (CPU|GPU)

To learn a mapping between the source and the target space, simply run:

python supervised.py --src_lang en --tgt_lang es --src_emb data/wiki.en.vec --tgt_emb data/wiki.es.vec --n_refinement 5 --dico_train default

By default, dico_train will point to our ground-truth dictionaries (downloaded above); when set to "identical_char" it will use identical character strings between source and target languages to form a vocabulary. Logs and embeddings will be saved in the dumped/ directory.

The unsupervised way: adversarial training and refinement (CPU|GPU)

To learn a mapping using adversarial training and iterative Procrustes refinement, run:

python unsupervised.py --src_lang en --tgt_lang es --src_emb data/wiki.en.vec --tgt_emb data/wiki.es.vec --n_refinement 5

By default, the validation metric is the mean cosine of word pairs from a synthetic dictionary built with CSLS (Cross-domain similarity local scaling). For some language pairs (e.g. En-Zh), we recommend to center the embeddings using --normalize_embeddings center.

Evaluate monolingual or cross-lingual embeddings (CPU|GPU)

We also include a simple script to evaluate the quality of monolingual or cross-lingual word embeddings on several tasks:

Monolingual

python evaluate.py --src_lang en --src_emb data/wiki.en.vec --max_vocab 200000

Cross-lingual

python evaluate.py --src_lang en --tgt_lang es --src_emb data/wiki.en-es.en.vec --tgt_emb data/wiki.en-es.es.vec --max_vocab 200000

Word embedding format

By default, the aligned embeddings are exported to a text format at the end of experiments: --export txt. Exporting embeddings to a text file can take a while if you have a lot of embeddings. For a very fast export, you can set --export pth to export the embeddings in a PyTorch binary file, or simply disable the export (--export "").

When loading embeddings, the model can load:

  • PyTorch binary files previously generated by MUSE (.pth files)
  • fastText binary files previously generated by fastText (.bin files)
  • text files (text file with one word embedding per line)

The two first options are very fast and can load 1 million embeddings in a few seconds, while loading text files can take a while.

Download

We provide multilingual embeddings and ground-truth bilingual dictionaries. These embeddings are fastText embeddings that have been aligned in a common space.

Multilingual word Embeddings

We release fastText Wikipedia supervised word embeddings for 30 languages, aligned in a single vector space.

Arabic: text Bulgarian: text Catalan: text Croatian: text Czech: text Danish: text
Dutch: text English: text Estonian: text Finnish: text French: text German: text
Greek: text Hebrew: text Hungarian: text Indonesian: text Italian: text Macedonian: text
Norwegian: text Polish: text Portuguese: text Romanian: text Russian: text Slovak: text
Slovenian: text Spanish: text Swedish: text Turkish: text Ukrainian: text Vietnamese: text

You can visualize crosslingual nearest neighbors using demo.ipynb.

Ground-truth bilingual dictionaries

We created 110 large-scale ground-truth bilingual dictionaries using an internal translation tool. The dictionaries handle well the polysemy of words. We provide a train and test split of 5000 and 1500 unique source words, as well as a larger set of up to 100k pairs. Our goal is to ease the development and the evaluation of cross-lingual word embeddings and multilingual NLP.

European languages in every direction

src-tgt German English Spanish French Italian Portuguese
German - full train test full train test full train test full train test full train test
English full train test - full train test full train test full train test full train test
Spanish full train test full train test - full train test full train test full train test
French full train test full train test full train test - full train test full train test
Italian full train test full train test full train test full train test - full train test
Portuguese full train test full train test full train test full train test full train test -

Other languages to English (e.g. {fr,es}-en)

Afrikaans: full train test Albanian: full train test Arabic: full train test Bengali: full train test
Bosnian: full train test Bulgarian: full train test Catalan: full train test Chinese: full train test
Croatian: full train test Czech: full train test Danish: full train test Dutch: full train test
English: full train test Estonian: full train test Filipino: full train test Finnish: full train test
French: full train test German: full train test Greek: full train test Hebrew: full train test
Hindi: full train test Hungarian: full train test Indonesian: full train test Italian: full train test
Japanese: full train test Korean: full train test Latvian: full train test Littuanian: full train test
Macedonian: full train test Malay: full train test Norwegian: full train test Persian: full train test
Polish: full train test Portuguese: full train test Romanian: full train test Russian: full train test
Slovak: full train test Slovenian: full train test Spanish: full train test Swedish: full train test
Tamil: full train test Thai: full train test Turkish: full train test Ukrainian: full train test
Vietnamese: full train test

English to other languages (e.g. en-{fr,es})

Afrikaans: full train test Albanian: full train test Arabic: full train test Bengali: full train test
Bosnian: full train test Bulgarian: full train test Catalan: full train test Chinese: full train test
Croatian: full train test Czech: full train test Danish: full train test Dutch: full train test
English: full train test Estonian: full train test Filipino: full train test Finnish: full train test
French: full train test German: full train test Greek: full train test Hebrew: full train test
Hindi: full train test Hungarian: full train test Indonesian: full train test Italian: full train test
Japanese: full train test Korean: full train test Latvian: full train test Littuanian: full train test
Macedonian: full train test Malay: full train test Norwegian: full train test Persian: full train test
Polish: full train test Portuguese: full train test Romanian: full train test Russian: full train test
Slovak: full train test Slovenian: full train test Spanish: full train test Swedish: full train test
Tamil: full train test Thai: full train test Turkish: full train test Ukrainian: full train test
Vietnamese: full train test

References

Please cite [1] if you found the resources in this repository useful.

Word Translation Without Parallel Data

[1] A. Conneau*, G. Lample*, L. Denoyer, MA. Ranzato, H. Jégou, Word Translation Without Parallel Data

* Equal contribution. Order has been determined with a coin flip.

@article{conneau2017word,
  title={Word Translation Without Parallel Data},
  author={Conneau, Alexis and Lample, Guillaume and Ranzato, Marc'Aurelio and Denoyer, Ludovic and J{\'e}gou, Herv{\'e}},
  journal={arXiv preprint arXiv:1710.04087},
  year={2017}
}

MUSE is the project at the origin of the work on unsupervised machine translation with monolingual data only [2].

Unsupervised Machine Translation With Monolingual Data Only

[2] G. Lample, A. Conneau, L. Denoyer, MA. Ranzato Unsupervised Machine Translation With Monolingual Data Only

@article{lample2017unsupervised,
  title={Unsupervised Machine Translation Using Monolingual Corpora Only},
  author={Lample, Guillaume and Conneau, Alexis and Denoyer, Ludovic and Ranzato, Marc'Aurelio},
  journal={arXiv preprint arXiv:1711.00043},
  year={2017}
}

Related work

Contact: [email protected] [email protected]

Owner
Facebook Research
Facebook Research
A library for end-to-end learning of embedding index and retrieval model

Poeem Poeem is a library for efficient approximate nearest neighbor (ANN) search, which has been widely adopted in industrial recommendation, advertis

54 Dec 21, 2022
A CSRankings-like index for speech researchers

Speech Rankings This project mimics CSRankings to generate an ordered list of researchers in speech/spoken language processing along with their possib

Mutian He 19 Nov 26, 2022
A notebook that shows how to import the IITB English-Hindi Parallel Corpus from the HuggingFace datasets repository

We provide a notebook that shows how to import the IITB English-Hindi Parallel Corpus from the HuggingFace datasets repository. The notebook also shows how to segment the corpus using BPE tokenizatio

Computation for Indian Language Technology (CFILT) 9 Oct 13, 2022
Community and sentiment analysis based on tweets

The project has set itself the goal of analyzing the thoughts and interaction of Italian users through the social posts expressed through the Twitter platform on the day of the entry into force of th

3 Nov 17, 2022
Test finetuning of XLSR (multilingual wav2vec 2.0) for other speech classification tasks

wav2vec_finetune Test finetuning of XLSR (multilingual wav2vec 2.0) for other speech classification tasks Initial test: gender recognition on this dat

8 Aug 11, 2022
Turn clang-tidy warnings and fixes to comments in your pull request

clang-tidy pull request comments A GitHub Action to post clang-tidy warnings and suggestions as review comments on your pull request. What platisd/cla

Dimitris Platis 30 Dec 13, 2022
leaking paid token generator that was a shit lmao for 100$ haha

Discord-Token-Generator-Leaked leaking paid token generator that was a shit lmao for 100$ he selling it for 100$ wth here the code enjoy don't forget

Keevo 5 Apr 15, 2022
🦅 Pretrained BigBird Model for Korean (up to 4096 tokens)

Pretrained BigBird Model for Korean What is BigBird • How to Use • Pretraining • Evaluation Result • Docs • Citation 한국어 | English What is BigBird? Bi

Jangwon Park 183 Dec 14, 2022
Repositório do trabalho de introdução a NLP

Trabalho da disciplina de BI NLP Repositório do trabalho da disciplina Introdução a Processamento de Linguagem Natural da pós BI-Master da PUC-RIO. Eq

Leonardo Lins 1 Jan 18, 2022
中文无监督SimCSE Pytorch实现

A PyTorch implementation of unsupervised SimCSE SimCSE: Simple Contrastive Learning of Sentence Embeddings 1. 用法 无监督训练 python train_unsup.py ./data/ne

99 Dec 23, 2022
Open-source offline translation library written in Python. Uses OpenNMT for translations

Open source neural machine translation in Python. Designed to be used either as a Python library or desktop application. Uses OpenNMT for translations and PyQt for GUI.

Argos Open Tech 1.6k Jan 01, 2023
The repository for the paper: Multilingual Translation via Grafting Pre-trained Language Models

Graformer The repository for the paper: Multilingual Translation via Grafting Pre-trained Language Models Graformer (also named BridgeTransformer in t

22 Dec 14, 2022
PyTorch Implementation of the paper Single Image Texture Translation for Data Augmentation

SITT The repo contains official PyTorch Implementation of the paper Single Image Texture Translation for Data Augmentation. Authors: Boyi Li Yin Cui T

Boyi Li 52 Jan 05, 2023
SurvTRACE: Transformers for Survival Analysis with Competing Events

⭐ SurvTRACE: Transformers for Survival Analysis with Competing Events This repo provides the implementation of SurvTRACE for survival analysis. It is

Zifeng 13 Oct 06, 2022
a CTF web challenge about making screenshots

screenshotter (web) A CTF web challenge about making screenshots. It is inspired by a bug found in real life. The challenge was created by @LiveOverfl

219 Jan 02, 2023
Named-entity recognition using neural networks. Easy-to-use and state-of-the-art results.

NeuroNER NeuroNER is a program that performs named-entity recognition (NER). Website: neuroner.com. This page gives step-by-step instructions to insta

Franck Dernoncourt 1.6k Dec 27, 2022
[AAAI 21] Curriculum Labeling: Revisiting Pseudo-Labeling for Semi-Supervised Learning

◥ Curriculum Labeling ◣ Revisiting Pseudo-Labeling for Semi-Supervised Learning Paola Cascante-Bonilla, Fuwen Tan, Yanjun Qi, Vicente Ordonez. In the

UVA Computer Vision 113 Dec 15, 2022
Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision Training Efficiency We show the training efficiency of our DSLP model b

Chenyang Huang 37 Jan 04, 2023
QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries

Moment-DETR QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries Jie Lei, Tamara L. Berg, Mohit Bansal For dataset de

Jie Lei 雷杰 133 Dec 22, 2022
Spam filtering made easy for you

spammy Author: Tasdik Rahman Latest version: 1.0.3 Contents 1 Overview 2 Features 3 Example 3.1 Accuracy of the classifier 4 Installation 4.1 Upgradin

Tasdik Rahman 137 Dec 18, 2022