🌎 The Modern Declarative Data Flow Framework for the AI Empowered Generation.

Overview

🌎 JSONClasses Pypi Python Version License PR Welcome

JSONClasses is a declarative data flow pipeline and data graph framework.

Official Website: https://www.jsonclasses.com

Official Documentation: https://docs.jsonclasses.com

🚗 Features

Features
🛠 Data Modeling Declarative data model with Python type hints
🍸 Data Sanitization Two strictness modes
🩺 Data Validation Descriptive data validation rules without even a line of code
🧬 Data Transformation Intuitive with modifier pipelines
🦖 Data Presentation Custom key encoding & decoding strategies
🌍 Data Graphing Models are linked with each other on the same graph
🏄‍♂️ Data Querying Well-designed protocols and implementations for databases
🚀 Synthesized CRUD Only with a line of code
👮‍♀️ Session & Authorization Builtin support for session and authorization
🔐 Permission System Supports both object level and field level
📁 File Uploading A configuration is enough for file uploading
📦 Data Seeder Declarative named graph relationship

🍎 Getting Started

Prerequisites

Python >= 3.10 is required. You can download it here.

Install JSONClasses

Install JSONClasses is simple with pip.

pip install jsonclasses

Install Components

Depends on your need, you can install ORM integration and HTTP library integration with the following commands.

pip install jsonclasses-pymongo jsonclasses-server

🎹 Examples

Business Logic Examples

Example 1: Dating App Users

Let's say, you are building the base user functionality for a cross-platform dating app.

The product requirements are:

  1. Unique phone number is required
  2. Password should be secure, encrypted, hidden from response
  3. Gender cannot be changed after set
  4. This product is adult only
  5. User intro should be brief

Let's transform the requirements into code.

from jsonclasses import jsonclass, types
from jsonclasses_pymongo import pymongo
from jsonclasses_server import api


@api
@pymongo
@jsonclass
class User:
    id: str = types.readonly.str.primary.mongoid.required
    phone_no: str = types.str.unique.index.match(local_phone_no_regex).required #1
    email: str = types.str.match(email_regex)
    password: str = types.str.writeonly.length(8, 16).match(secure_password_regex).transform(salt).required #2
    nickname: str = types.str.required
    gender: str = types.str.writeonce.oneof(['male', 'female']) #3
    age: int = types.int.min(18).max(100) #4
    intro: str = types.str.truncate(500) #5
    created_at: datetime = types.readonly.datetime.tscreated.required
    updated_at: datetime = types.readonly.datetime.tsupdated.required

⚽️ Database & HTTP Library Integrations

🦸 Contributing

  • File a bug report. Be sure to include information like what version of YoMo you are using, what your operating system is, and steps to recreate the bug.
  • Suggest a new feature.

🤹🏻‍♀️ Feedback

Any questions or good ideas, please feel free to come to our Discussion. Any feedback would be greatly appreciated!

License

MIT License

Owner
Fillmula Inc.
Fillmula Inc.
基于DouZero定制AI实战欢乐斗地主

DouZero_For_Happy_DouDiZhu: 将DouZero用于欢乐斗地主实战 本项目基于DouZero 环境配置请移步项目DouZero 模型默认为WP,更换模型请修改start.py中的模型路径 运行main.py即可 SL (baselines/sl/): 基于人类数据进行深度学习

1.5k Jan 08, 2023
Data, model training, and evaluation code for "PubTables-1M: Towards a universal dataset and metrics for training and evaluating table extraction models".

PubTables-1M This repository contains training and evaluation code for the paper "PubTables-1M: Towards a universal dataset and metrics for training a

Microsoft 365 Jan 04, 2023
A Simple Long-Tailed Rocognition Baseline via Vision-Language Model

BALLAD This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model. Requirements Python3 Pytorch(1.7.

Teli Ma 4 Jan 20, 2022
ThunderSVM: A Fast SVM Library on GPUs and CPUs

What's new We have recently released ThunderGBM, a fast GBDT and Random Forest library on GPUs. add scikit-learn interface, see here Overview The miss

Xtra Computing Group 1.4k Dec 22, 2022
Facilitating Database Tuning with Hyper-ParameterOptimization: A Comprehensive Experimental Evaluation

A Comprehensive Experimental Evaluation for Database Configuration Tuning This is the source code to the paper "Facilitating Database Tuning with Hype

DAIR Lab 9 Oct 29, 2022
[NeurIPS 2020] Blind Video Temporal Consistency via Deep Video Prior

pytorch-deep-video-prior (DVP) Official PyTorch implementation for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior TensorFlo

Yazhou XING 90 Oct 19, 2022
PConv-Keras - Unofficial implementation of "Image Inpainting for Irregular Holes Using Partial Convolutions". Try at: www.fixmyphoto.ai

Partial Convolutions for Image Inpainting using Keras Keras implementation of "Image Inpainting for Irregular Holes Using Partial Convolutions", https

Mathias Gruber 871 Jan 05, 2023
VACA: Designing Variational Graph Autoencoders for Interventional and Counterfactual Queries

VACA Code repository for the paper "VACA: Designing Variational Graph Autoencoders for Interventional and Counterfactual Queries (arXiv)". The impleme

Pablo Sánchez-Martín 16 Oct 10, 2022
ICLR 2021, Fair Mixup: Fairness via Interpolation

Fair Mixup: Fairness via Interpolation Training classifiers under fairness constraints such as group fairness, regularizes the disparities of predicti

Ching-Yao Chuang 49 Nov 22, 2022
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
Real time Human Detection Counting

In this python project, we are going to build the Human Detection and Counting System through Webcam or you can give your own video or images. This is a deep learning project on computer vision, whic

Mir Nawaz Ahmad 2 Jun 17, 2022
Pytorch implementation of the DeepDream computer vision algorithm

deep-dream-in-pytorch Pytorch (https://github.com/pytorch/pytorch) implementation of the deep dream (https://en.wikipedia.org/wiki/DeepDream) computer

102 Dec 05, 2022
Official PyTorch implementation of Joint Object Detection and Multi-Object Tracking with Graph Neural Networks

This is the official PyTorch implementation of our paper: "Joint Object Detection and Multi-Object Tracking with Graph Neural Networks". Our project website and video demos are here.

Richard Wang 443 Dec 06, 2022
OpenMMLab Text Detection, Recognition and Understanding Toolbox

Introduction English | 简体中文 MMOCR is an open-source toolbox based on PyTorch and mmdetection for text detection, text recognition, and the correspondi

OpenMMLab 3k Jan 07, 2023
[ICCV 2021] FaPN: Feature-aligned Pyramid Network for Dense Image Prediction

FaPN: Feature-aligned Pyramid Network for Dense Image Prediction [arXiv] [Project Page] @inproceedings{ huang2021fapn, title={{FaPN}: Feature-alig

EMI-Group 175 Dec 30, 2022
MediaPipe is a an open-source framework from Google for building multimodal

MediaPipe is a an open-source framework from Google for building multimodal (eg. video, audio, any time series data), cross platform (i.e Android, iOS, web, edge devices) applied ML pipelines. It is

Bhavishya Pandit 3 Sep 30, 2022
[ICCV'21] UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction

UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction Project Page | Paper | Supplementary | Video This reposit

331 Dec 28, 2022
Automated detection of anomalous exoplanet transits in light curve data.

Automatically detecting anomalous exoplanet transits This repository contains the source code for the paper "Automatically detecting anomalous exoplan

1 Feb 01, 2022
Official Implementation of Swapping Autoencoder for Deep Image Manipulation (NeurIPS 2020)

Swapping Autoencoder for Deep Image Manipulation Taesung Park, Jun-Yan Zhu, Oliver Wang, Jingwan Lu, Eli Shechtman, Alexei A. Efros, Richard Zhang UC

449 Dec 27, 2022
Implicit Graph Neural Networks

Implicit Graph Neural Networks This repository is the official PyTorch implementation of "Implicit Graph Neural Networks". Fangda Gu*, Heng Chang*, We

Heng Chang 48 Nov 29, 2022