For visualizing the dair-v2x-i dataset

Overview

3D Detection & Tracking Viewer

The project is based on hailanyi/3D-Detection-Tracking-Viewer and is modified, you can find the original version of the code below: https://github.com/hailanyi/3D-Detection-Tracking-Viewer

This project was developed for viewing 3D object detection results from the Dair-V2X-I datasets.

It supports rendering 3D bounding boxes and rendering boxes on images.

Features

  • Captioning box ids(infos) in 3D scene
  • Projecting 3D box or points on 2D image

Design pattern

This code includes two parts, one for convert tools, other one for visualization of 3D detection results.

Change log

  • (2022.02.01) Adapted to the Dair-V2X-I dataset

Prepare data

  • Dair-V2X-I detection dataset
  • Convert the Dair-V2X-I dataset to kitti format using the conversion tool

Requirements (Updated 2021.11.2)

python==3.7.11
numpy==1.21.4
vedo==2022.0.1
vtk==8.1.2
opencv-python==4.1.1.26
matplotlib==3.4.3
open3d==0.14.1

It is recommended to use anaconda to create the visualization environment

conda create -n dair_vis python=3.8

To activate this environment, use

conda activate dair_vis

Install the requirements

pip install -r requirements.txt

To deactivate an active environment, use

conda deactivate

Convert tools

  • Prepare a dataset of the following structure:
  • "kitti_format" must be an empty folder to store the conversion result
  • "source_format" to store the source Dair-V2X-I datasets.
# For Dair-V2X-I Dataset  
dair_v2x_i
├── kitti_format
├── source_format
│   ├── single-infrastructure-side
│   │   ├── calib
│   │   │   ├── camera_intrinsic
│   │   │   └── virtuallidar_to_camera
│   │   └── label
│   │       ├── camera
│   │       └── virtuallidar
│   ├── single-infrastructure-side-example
│   │   ├── calib
│   │   │   ├── camera_intrinsic
│   │   │   └── virtuallidar_to_camera
│   │   ├── image
│   │   ├── label
│   │   │   ├── camera
│   │   │   └── virtuallidar
│   │   └── velodyne
│   ├── single-infrastructure-side-image
│   └── single-infrastructure-side-velodyne

  • If you have the same folder structure, you only need change the "root path" to your local path from config/config.yaml
  • Running the jupyter notebook server and open the "convert.ipynb"
  • The code is very simple , so there are no input parameters for advanced customization, you need to comment or copy the code to implemented separately following functions : -Convert calib files to KITTI format -Convert camera-based label files to KITTI format -Convert lidar-based label files to KITTI format -Convert image folders to KITTI format -Convert velodyne folders to KITTI format

After the convet you will get the following result. the

dair_v2x_i
├── kitti_format
│   ├── calib
│   ├── image_2
│   ├── label_2
│   ├── label_velodyne
│   └── velodyne
 
  • The label_2 base the camera label, and use the lidar label information replace the size information(w,h,l). In the camera view looks like better.
  • The label_velodyne base the velodyne label.
  • P2 represents the camera internal reference, which is a 3×3 matrix, not the same as KITTI. It convert frome the "cam_K" of the json file.
  • Tr_velo_to_cam: represents the camera to lidar transformation matrix, as a 3×4 matrix.

Usage

1. Set the path to the dataset folder used for input to the visualizer

If you have completed the conversion operation, the path should have been set correctly. Otherwise you need to set "root_path" in the config/config.yaml to the correct path

2. Choose whether camera or lidar based tagging for visualization

You need to set the "label_select" parameter in config.yaml to "cam" or "vel", to specify the label frome label_2 or velodyne_label.

2. Run and Terminate

  • You can start the program with the following command
python dair_3D_detection_viewer.py
  • Pressing space in the lidar window will display the next frame
  • Terminating the program is more complicated, you cannot terminate the program at static image status. You need to press the space quickly to make the frames play continuously, and when it becomes obvious that the system is overloaded with resources and the program can't respond, press Ctrl-C in the terminal window to terminate it. Try a few more times and you will eventually get the hang of it.

Notes on the Dair-V2X-I dataset

  • In the calib file of this dataset, "cam_K" is the real intrinsic matrix parameter of the camera, not "P". Although they are very close in value and structure.
  • There are multiple camera images with different focal and perspectives in this dataset, and the camera intrinsic matrix reference will change with each image file. Therefore, when using this dataset, please make sure that the calib file you are using corresponds to the image file (e.g. do not use only the 000000.txt parameter for all image files)
  • The sequence of files in this dataset is non-contiguous (e.g. missing the 000023), do not only use 00000 to lens(dataset) to get the sequence of file names directly.
  • The dataset provides optimized labels for both lidar and camera, and after testing, there are errors in the projection of the lidar label on camera (but the projection matrix is correct, only the label itself has issues). Likewise, there is a disadvantage of using the camera's label in lidar. Therefore it is recommended to use the corresponding label for lidar, and use the fused label for the camera.
  • There are some other objects in the label, for example you can see some trafficcone.
E-Ink Magic Calendar that automatically syncs to Google Calendar and runs off a battery powered Raspberry Pi Zero

MagInkCal This repo contains the code needed to drive an E-Ink Magic Calendar that uses a battery powered (PiSugar2) Raspberry Pi Zero WH to retrieve

2.8k Dec 28, 2022
Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion

Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion Preface This directory provides an implementation of the algori

Jean-Samuel Leboeuf 0 Nov 03, 2021
[CVPR 2021] Monocular depth estimation using wavelets for efficiency

Single Image Depth Prediction with Wavelet Decomposition Michaël Ramamonjisoa, Michael Firman, Jamie Watson, Vincent Lepetit and Daniyar Turmukhambeto

Niantic Labs 205 Jan 02, 2023
Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation (RA-L/ICRA 2020)

Aerial Depth Completion This work is described in the letter "Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation", by Lucas

ETHZ V4RL 70 Dec 22, 2022
Source Code for Simulations in the Publication "Can the brain use waves to solve planning problems?"

Code for Simulations in the Publication Can the brain use waves to solve planning problems? Installing Required Python Packages Please use Python vers

EMD Group 2 Jul 01, 2022
Face Mask Detection on Image and Video using tensorflow and keras

Face-Mask-Detection Face Mask Detection on Image and Video using tensorflow and keras Train Neural Network on face-mask dataset using tensorflow and k

Nahid Ebrahimian 12 Nov 11, 2022
Unified Interface for Constructing and Managing Workflows on different workflow engines, such as Argo Workflows, Tekton Pipelines, and Apache Airflow.

Couler What is Couler? Couler aims to provide a unified interface for constructing and managing workflows on different workflow engines, such as Argo

Couler Project 781 Jan 03, 2023
Vector Neurons: A General Framework for SO(3)-Equivariant Networks

Vector Neurons: A General Framework for SO(3)-Equivariant Networks Created by Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacc

Congyue Deng 332 Dec 29, 2022
GAN-based Matrix Factorization for Recommender Systems

GAN-based Matrix Factorization for Recommender Systems This repository contains the datasets' splits, the source code of the experiments and their res

Ervin Dervishaj 9 Nov 06, 2022
This repository is related to an Arabic tutorial, within the tutorial we discuss the common data structure and algorithms and their worst and best case for each, then implement the code using Python.

Data Structure and Algorithms with Python This repository is related to the Arabic tutorial here, within the tutorial we discuss the common data struc

Mohamed Ayman 33 Dec 02, 2022
Dynamic Capacity Networks using Tensorflow

Dynamic Capacity Networks using Tensorflow Dynamic Capacity Networks (DCN; http://arxiv.org/abs/1511.07838) implementation using Tensorflow. DCN reduc

Taeksoo Kim 8 Feb 23, 2021
A port of muP to JAX/Haiku

MUP for Haiku This is a (very preliminary) port of Yang and Hu et al.'s μP repo to Haiku and JAX. It's not feature complete, and I'm very open to sugg

18 Dec 30, 2022
Codes for AAAI22 paper "Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum"

Paper For more details, please see our paper Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum which has been accepted a

14 Sep 30, 2022
Adabelief-Optimizer - Repository for NeurIPS 2020 Spotlight "AdaBelief Optimizer: Adapting stepsizes by the belief in observed gradients"

AdaBelief Optimizer NeurIPS 2020 Spotlight, trains fast as Adam, generalizes well as SGD, and is stable to train GANs. Release of package We have rele

Juntang Zhuang 998 Dec 29, 2022
This repository compare a selfie with images from identity documents and response if the selfie match.

aws-rekognition-facecompare This repository compare a selfie with images from identity documents and response if the selfie match. This code was made

1 Jan 27, 2022
Location-Sensitive Visual Recognition with Cross-IOU Loss

The trained models are temporarily unavailable, but you can train the code using reasonable computational resource. Location-Sensitive Visual Recognit

Kaiwen Duan 146 Dec 25, 2022
AlphaNet Improved Training of Supernet with Alpha-Divergence

AlphaNet: Improved Training of Supernet with Alpha-Divergence This repository contains our PyTorch training code, evaluation code and pretrained model

Facebook Research 87 Oct 10, 2022
Class-Balanced Loss Based on Effective Number of Samples. CVPR 2019

Class-Balanced Loss Based on Effective Number of Samples Tensorflow code for the paper: Class-Balanced Loss Based on Effective Number of Samples Yin C

Yin Cui 546 Jan 08, 2023
Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation (ICCV2021)

Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation This is a pytorch project for the paper Dynamic Divide-and-Conquer Ad

DV Lab 29 Nov 21, 2022
YOLOv2 in PyTorch

YOLOv2 in PyTorch NOTE: This project is no longer maintained and may not compatible with the newest pytorch (after 0.4.0). This is a PyTorch implement

Long Chen 1.5k Jan 02, 2023