The Codebase for Causal Distillation for Language Models.

Overview

Python 3.7 License CC BY-NC

Causal Distillation for Language Models

Zhengxuan Wu*,Atticus Geiger*, Josh Rozner, Elisa Kreiss, Hanson Lu, Thomas Icard, Christopher Potts, Noah D. Goodman

The is an implementation of our preprint Causal Distillation for Language Models. The standard approach to distillation trains a student model against two objectives: a task-specific objective (e.g., language modeling) and an imitation objective that encourages the hidden states of the student model to be similar to those of the larger teacher model. In this paper, we show that it is beneficial to augment distillation with a third objective that encourages the student to imitate the causal computation process of the teacher through interchange intervention training (IIT).

We fork our main codebase from the Huggingface Distillation Interface.

Release Notes

12/02/2021 Our paper on Interchange Intervention Training (IIT) is released! Read this more formal definition of the method.
12/06/2021 Released the causal distillation codebase with the preprint.
12/06/2021 Released evaluation results on distilled tiny-BERT (3 layers) with the Wiki-Text 103M dataset.
⬜️ Released evaluation results on causal-distilled tiny-BERT (3 layers) with the Wiki-Text 103M + BookCorpus dataset.
⬜️ Released evaluation results on causal-distilled BERT (6 layers) with the Wiki-Text 103M + BookCorpus dataset.
⬜️ Released more ablation studies.
⬜️ Released causal-distilled tiny-BERT (3 layers) model files.
⬜️ Released causal-distilled BERT (6 layers) model files.

If you experience any issues or have suggestions, please contact me either thourgh the issues page or at [email protected].

Benchmark Results

Here are the results on the dev sets of GLUE:

Model Average-score CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B WNLI
DistilBERT (3 layers) 67.81 22.8 71.6 78.2 82.1 84.3 55.4 86.5 56.7 24.2
CausalBERT (3 layers) 69.71 25.0 72.9 78.6 83.1 84.9 55.4 86.9 66.5 21.5

1 Average-score computed without WNLI.

Main Contents

Citation

If you use this repository, please cite the following two papers: paper for interchange intervention training, and paper for the our distillation method.

  @article{geiger-etal-2021-iit,
        title={Inducing Causal Structure for Interpretable Neural Networks}, 
        author={Geiger, Atticus and Wu, Zhengxuan and Lu, Hanson and Rozner, Josh and Kreiss, Elisa and Icard, Thomas and Goodman, Noah D. and Potts, Christopher},
        year={2021},
        eprint={2112.00826},
        archivePrefix={arXiv},
        primaryClass={cs.LG}
  }

  @article{wu-etal-2021-distill,
        title={Causal Distillation for Language Models}, 
        author={Wu, Zhengxuan and Geiger, Atticus and Rozner, Josh and Kreiss, Elisa and Lu, Hanson and Icard, Thomas and Potts, Christopher and Goodman, Noah D.},
        year={2021},
        eprint={2112.02505},
        archivePrefix={arXiv},
        primaryClass={cs.CL}
  }

Requirements

  • Python 3.6 or 3.7 are supported.
  • Pytorch Version: 1.9.0
  • Transfermers Version: 4.11.3
  • Datasets Version: Version: 1.8.0
  • We have performed experiments on Titan V GPU. We assume 12GB of GPU memory (more memory can expedite training).
  • Since we build our codebase off the Huggingface Distillation Interface, please review their doc for requirements.

Dataset

Following the Huggingface Distillation Interface, we need to pre-process the datasets before we do distillation. You can refer to their repo for details. We adapt their pre-processing scripts, and update with a few improvements. For example, we can now binarize datasets from the Dataset Hub from huggingface directly.

# preprocessing from disk
python script/binarized_data.py \
--file_path ../../bert-mid-tuning/data-files/wikitext-15M \
--split train \
--field_name text \
--max_parsing_example 1000 \
--tokenizer_type bert \
--tokenizer_name bert-base-uncased \
--dump_file ./data/binarized_text

# preprocessing from huggingface.
python scripts/binarized_data.py \
--dataset_name bookcorpus \
--split train \
--field_name text \
--tokenizer_type bert \
--tokenizer_name bert-base-uncased \
--dump_file bookcorpus-dataset/binarized_text \
--cache_dir ./distill_cache/

python scripts/binarized_data.py \
--dataset_name wikitext \
--split train \
--field_name text \
--tokenizer_type bert \
--tokenizer_name bert-base-uncased \
--dump_file wikitext-dataset/binarized_text \
--cache_dir ./distill_cache/

python scripts/binarized_data.py \
--dataset_name wikitext+bookcorpus \
--split train \
--field_name text \
--tokenizer_type bert \
--tokenizer_name bert-base-uncased \
--dump_file wikitext+bookcorpus-dataset/binarized_text \
--cache_dir ./distill_cache/

# helper scripts to combine two binarized data files
python scripts/data_combinator.py \
--file_path_left ./bookcorpus-dataset/binarized_text.train.bert-base-uncased.pickle \
--file_path_right ./wikitext-dataset/binarized_text.train.bert-base-uncased.pickle \
--split train \
--tokenizer_name bert-base-uncased \
--dump_file wikitext+bookcorpus-dataset/binarized_text

# multiprocessing preprocessor.
python scripts/binarized_data.py \
--dataset_name bookcorpus \
--split train \
--field_name text \
--tokenizer_type bert \
--tokenizer_name bert-base-uncased \
--dump_file bookcorpus-dataset/binarized_text \
--cache_dir ./distill_cache/ \
--fast_process \
--preprocessing_num_workers 48

After you get the datasets ready, you need to generate token counts as well.

python scripts/token_counts.py \
--data_file data/binarized_text.train.bert-base-uncased.pickle \
--token_counts_dump data/binarized_text.train.token_counts.bert-base-uncased.pickle \
--vocab_size 30522

Distillation

Before training, we recommand you to initialize your student model with weights extracted from the teacher model.

python scripts/extract_distilbert.py \
--model_type bert \
--model_name bert-base-uncased \
--dump_checkpoint ./distillation_checkpoints/bert-base-uncased_num_layer_3.pth \
--num_layers 3

Now, here is an example for you to distill with our causal distillation objective or without,

CUDA_VISIBLE_DEVICES=9,4 python causal_train.py \
--force \
--n_gpu 2 \
--is_wandb \
--log_interval 10 \
--student_type distilbert \
--student_config ./training_configs/distilbert-base-uncased-small.json \
--student_pretrained_weights ./distillation_checkpoints/bert-base-uncased_num_layer_3.pth \
--teacher_type bert \
--teacher_name bert-base-uncased \
--neuron_mapping ./training_configs/single_middle.nm \
--mlm --alpha_ce 0.25 --alpha_mlm 0.25 --alpha_cos 0.25 --alpha_clm 0.0 --alpha_causal 0.25 \
--freeze_pos_embs \
--dump_path ./results/ \
--data_file ./wikitext-15M/binarized_text.train.bert-base-uncased.pickle \
--token_counts ./wikitext-15M/binarized_text.train.token_counts.bert-base-uncased.pickle \
--seed 42 \
--gradient_accumulation_steps 50 \
--n_epoch 3 \
--batch_size 5

CUDA_VISIBLE_DEVICES=0,1,2,3 python causal_train.py \
--force \
--n_gpu 4 \
--is_wandb \
--log_interval 10 \
--student_type distilbert \
--student_config ./training_configs/distilbert-base-uncased-small.json \
--student_pretrained_weights ./distillation_checkpoints/bert-base-uncased_num_layer_3.pth \
--teacher_type bert \
--teacher_name bert-base-uncased \
--neuron_mapping ./training_configs/single_middle.nm \
--mlm --alpha_ce 0.33 --alpha_mlm 0.33 --alpha_cos 0.33 --alpha_clm 0.0 --alpha_causal 0.00 \
--freeze_pos_embs \
--dump_path ./results/ \
--data_file ./wikitext-15M/binarized_text.train.bert-base-uncased.pickle \
--token_counts ./wikitext-15M/binarized_text.train.token_counts.bert-base-uncased.pickle \
--seed 42 \
--gradient_accumulation_steps 124 \
--n_epoch 6 \
--batch_size 4

Note that you can simply turn our causal distillation objective on/off through setting the arguments.

Evaluation

After you get your distilled models, you need to fine-tune them and evaluate them with downstream tasks. We provide you all the scripts you need to run.

MLM Evaluation

CUDA_VISIBLE_DEVICES=5 python run_mlm.py \
--model_name_or_path ./results/s_distilbert_t_bert_data_wikitext-15M_seed_42_mlm_True_ce_0.25_mlm_0.25_cos_0.25_causal_0.25_nm_single_multilayer/ \
--dataset_dir ../../bert-mid-tuning/data-files/wikitext-15M/ \
--tokenizer_name bert-base-uncased \
--do_eval \
--output_dir /tmp/test-mlm \
--cache_dir ./distill_cache/

GLUE Evaluation

CUDA_VISIBLE_DEVICES=5,7,8,9 python run_glue.py \
--model_name_or_path ./results/s_distilbert_t_bert_data_wikitext-dataset_seed_42_mlm_True_ce_0.33_mlm_0.33_cos_0.33_causal_0.0_nm_single_middle/ \
--tokenizer_name bert-base-uncased \
--task_name sst2 \
--do_train \
--do_eval \
--max_seq_length 128 \
--per_device_train_batch_size 32 \
--learning_rate 2e-5 \
--num_train_epochs 3 \
--output_dir ./results/ \
--save_total_limit 1 \
--cache_dir ./distill_cache/

CoNLL Evaluation

CUDA_VISIBLE_DEVICES=2,3,7,8 python run_ner.py \
--model_name_or_path ./results/s_distilbert_t_bert_data_wikitext-dataset_seed_42_mlm_True_ce_0.33_mlm_0.33_cos_0.33_causal_0.0_nm_single_middle_crossway_False/ \
--tokenizer_name bert-base-uncased \
--dataset_name conll2003 \
--do_train \
--do_eval \
--output_dir ./ner_results/ \
--save_total_limit 1 \
--cache_dir ./distill_cache/

SQuAD Evaluation

CUDA_VISIBLE_DEVICES=2,3,7,8 python run_qa.py \
--model_name_or_path ./results/s_distilbert_t_bert_data_wikitext-dataset_seed_42_mlm_True_ce_0.33_mlm_0.33_cos_0.33_causal_0.0_nm_single_middle_crossway_False/ \
--tokenizer_name bert-base-uncased \
--dataset_name squad \
--do_train \
--do_eval \
--per_device_train_batch_size 12 \
--learning_rate 3e-5 \
--num_train_epochs 2 \
--max_seq_length 384 \
--doc_stride 128 \
--save_total_limit 1 \
--output_dir ./qa_results/
Trained on Simulated Data, Tested in the Real World

Trained on Simulated Data, Tested in the Real World

livox 43 Nov 18, 2022
MODNet: Trimap-Free Portrait Matting in Real Time

MODNet is a model for real-time portrait matting with only RGB image input.

Zhanghan Ke 2.8k Dec 30, 2022
Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations

Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations Trevor Ablett, Daniel (Yifan) Zhai, Jonatha

STARS Laboratory 3 Feb 01, 2022
PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning

PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning Warning: This is a rapidly evolving research prototype.

MIT Probabilistic Computing Project 190 Dec 27, 2022
Code for ACL 21: Generating Query Focused Summaries from Query-Free Resources

marge This repository releases the code for Generating Query Focused Summaries from Query-Free Resources. Please cite the following paper [bib] if you

Yumo Xu 28 Nov 10, 2022
Learning 3D Part Assembly from a Single Image

Learning 3D Part Assembly from a Single Image This repository contains a PyTorch implementation of the paper: Learning 3D Part Assembly from A Single

18 Dec 21, 2022
Official implementation of "Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform", ICCV 2021

Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform This repository is the implementation of "Variable-Rate Deep Image C

Myungseo Song 47 Dec 13, 2022
NeurIPS 2021, "Fine Samples for Learning with Noisy Labels"

[Official] FINE Samples for Learning with Noisy Labels This repository is the official implementation of "FINE Samples for Learning with Noisy Labels"

mythbuster 27 Dec 23, 2022
Implementation of SSMF: Shifting Seasonal Matrix Factorization

SSMF Implementation of SSMF: Shifting Seasonal Matrix Factorization, Koki Kawabata, Siddharth Bhatia, Rui Liu, Mohit Wadhwa, Bryan Hooi. NeurIPS, 2021

Koki Kawabata 9 Jun 10, 2022
Landmarks Recogntion Web application using Streamlit.

Landmark Recognition Web-App using Streamlit Watch Tutorial for this project Source Trained model landmarks_classifier_asia_V1/1 is taken from the Ten

Kushal Bhavsar 5 Dec 12, 2022
Code & Models for 3DETR - an End-to-end transformer model for 3D object detection

3DETR: An End-to-End Transformer Model for 3D Object Detection PyTorch implementation and models for 3DETR. 3DETR (3D DEtection TRansformer) is a simp

Facebook Research 487 Dec 31, 2022
Create and implement a deep learning library from scratch.

In this project, we create and implement a deep learning library from scratch. Table of Contents Deep Leaning Library Table of Contents About The Proj

Rishabh Bali 22 Aug 23, 2022
Flappy bird automation using Neuroevolution of Augmenting Topologies (NEAT) in Python

FlappyAI Flappy bird automation using Neuroevolution of Augmenting Topologies (NEAT) in Python Everything Used Genetic Algorithm especially NEAT conce

Eryawan Presma Y. 2 Mar 24, 2022
Implementation of Bottleneck Transformer in Pytorch

Bottleneck Transformer - Pytorch Implementation of Bottleneck Transformer, SotA visual recognition model with convolution + attention that outperforms

Phil Wang 621 Jan 06, 2023
SIEM Logstash parsing for more than hundred technologies

LogIndexer Pipeline Logstash Parsing Configurations for Elastisearch SIEM and OpenDistro for Elasticsearch SIEM Why this project exists The overhead o

146 Dec 29, 2022
Preprossing-loan-data-with-NumPy - In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United States.

Preprossing-loan-data-with-NumPy In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United

Dhawal Chitnavis 2 Jan 03, 2022
Implementation of light baking system for ray tracing based on Activision's UberBake

Vulkan Light Bakary MSU Graphics Group Student's Diploma Project Treefonov Andrey [GitHub] [LinkedIn] Project Goal The goal of the project is to imple

Andrey Treefonov 7 Dec 27, 2022
Codebase for INVASE: Instance-wise Variable Selection - 2019 ICLR

Codebase for "INVASE: Instance-wise Variable Selection" Authors: Jinsung Yoon, James Jordon, Mihaela van der Schaar Paper: Jinsung Yoon, James Jordon,

Jinsung Yoon 50 Nov 11, 2022
Cycle Consistent Adversarial Domain Adaptation (CyCADA)

Cycle Consistent Adversarial Domain Adaptation (CyCADA) A pytorch implementation of CyCADA. If you use this code in your research please consider citi

Hyunwoo Ko 2 Jan 10, 2022
Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

CoGAIL Table of Content Overview Installation Dataset Training Evaluation Trained Checkpoints Acknowledgement Citations License Overview This reposito

Jeremy Wang 29 Dec 24, 2022