Chunkmogrify: Real image inversion via Segments

Overview

Chunkmogrify: Real image inversion via Segments

Logo

Teaser video with live editing sessions can be found here

This code demonstrates the ideas discussed in arXiv submission Real Image Inversion via Segments.
http://arxiv.org/abs/2110.06269
(David Futschik, Michal Lukáč, Eli Shechtman, Daniel Sýkora)

Abstract:
We present a simple, yet effective approach to editing real images via generative adversarial networks (GAN). Unlike previous techniques, that treat all editing tasks as an operation that affects pixel values in the entire image in our approach we cut up the image into a set of smaller segments. For those segments corresponding latent codes of a generative network can be estimated with greater accuracy due to the lower number of constraints. When codes are altered by the user the content in the image is manipulated locally while the rest of it remains unaffected. Thanks to this property the final edited image better retains the original structures and thus helps to preserve natural look.

before after

before after

What do I need?

You will need a local machine with a relatively recent GPU - I wouldn't recommend trying Chunkmogrify with anything older than RTX 2080. It is technically possible to run even on CPU, but the operations become so slow that the user experience is not enjoyable.

Quick startup guide

Requirements:
Python 3.7 or newer

Note: If you are using Anaconda, I recommend creating a new environment to run this project. Packages installed with conda and pip often don't play together very nicely.

Steps to be able to successfully run the project:

  1. Clone or download the repository and open a terminal / Powershell instance in the directory.
  2. Install the required python packages by running pip install -r requirements.txt. This might take a while, since it will download a few packages which will be several hundred MBs of data. Some packages might need to compile their extensions (as well as this project itself), so a C++ compiler needs to be present. On Linux, this is typically not an issue, but running on Windows might require Visual Studio and CUDA installations to successfully setup the project.
  3. Run python app.py. When running for the first time, it will automatically download required resources, which are also several hundred megabytes. Progression of the download can be monitored in the command line window.

To see if everything installed and configured properly, load up a photo and try running a projection step. If there are no errors, you are good to go.

Possible problems:

Torch not compiled with CUDA enabled.
Run

pip uninstall torch
pip cache purge
pip install torch -f https://download.pytorch.org/whl/torch_stable.html

Explanation of usage

Tutorial video: click below

Open an image using File -> Image from File. There is a sample image provided to check functionality.

Mask painting:
Left click paints, right click unpaints. Mouse wheel controls the size of the brush.

Projection:
Input a number of steps (100 or 200 is ok, 500 is max before LR goes to 0 currently) and press Projection Steps. Wait until projection finishes, you can observe the global image view by choosing output mode Projection Only during this process. To fine-tune, you can perform a small number of Pivotal Tuning steps.

Editing:
To add an edit, click the double arrow down icon in the Attribute Editor on the left side. Choose the type of edit (W, S, Styleclip), the direction of the edit, and drag the sliders to change the currently masked region. Usually it's necessary to increase the multiplier before noticeable changes are reflected via the direction slider.

Multiple different edits can be composed on top of each other at the same time. Their order is largely irrelevant. Currently in the default mode, only one region is being edited, and so all selected edits apply to the same region. If you would like to change the region, you can Freeze the current image, and perform a new projection, but you will lose the ability to change existing edits.

To save the current image, click the Save Current Image button. If the Unalign checkbox is active, the program will attempt to compose the aligned face back into the original image. Saved images can be found in the SavedImages directory by default. This can be changed in _config.yaml.

Keyboard shortcuts

Current keyboard shortcuts include:

Show/Hide mask :: Alt+M
Toggle mask painting :: Alt+N

W-space editing

Source for some of the basic directions:
(https://twitter.com/robertluxemburg/status/1207087801344372736)

To add your own directions, save them in a numpy pickle format as a (num_ws, 512) or (1, 512) format and specify their path in w_directions.py.

Style-space editing (S space edits)

Source:
StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation
(https://arxiv.org/abs/2011.12799)
(https://github.com/betterze/StyleSpace)

The presets can be found in s_presets.py, some were taken directly from the paper, others I found by manual exploration. You can perform similar exploration by choosing the Custom preset once you have a projection.

StyleCLIP editing

Source:
StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery
(https://arxiv.org/abs/2103.17249)
(https://github.com/orpatashnik/StyleCLIP)

Pretrained models taken from (https://github.com/orpatashnik/StyleCLIP/blob/main/utils.py) and manually removed the decoder from the state dict, since it's not used and takes up majority of file size.

PTI Optimization

Source:
Pivotal Tuning for Latent-based Editing of Real Images
(https://arxiv.org/abs/2106.05744)

This method allows you to match the target photo very closely, while retaining editing capacities.

It's often good to run 30-50 iterations of PTI to get very close matching of the source image, which won't cause a very noticeable drop in the editing capabilities.

Attribution

This repository makes use of code provided by the various repositories linked above, plus additionally code from:

styleganv2-ada-pytorch (https://github.com/NVlabs/stylegan2-ada-pytorch)
poisson-image-editing (https://github.com/PPPW/poisson-image-editing) for optional support of idempotent blend (slow implementation of blending that only changes the masked part which can be accessed by uncommenting the option in synthesis.py)

Citation

If you find this code useful for your research, please cite the arXiv submission linked above.

Owner
David Futschik
PhD student @ CTU Prague, Czech Republic.
David Futschik
GenGNN: A Generic FPGA Framework for Graph Neural Network Acceleration

GenGNN: A Generic FPGA Framework for Graph Neural Network Acceleration Stefan Abi-Karam*, Yuqi He*, Rishov Sarkar*, Lakshmi Sathidevi, Zihang Qiao, Co

Sharc-Lab 19 Dec 15, 2022
FB-tCNN for SSVEP Recognition

FB-tCNN for SSVEP Recognition Here are the codes of the tCNN and FB-tCNN in the paper "Filter Bank Convolutional Neural Network for Short Time-Window

Wenlong Ding 12 Dec 14, 2022
Segmentation-Aware Convolutional Networks Using Local Attention Masks

Segmentation-Aware Convolutional Networks Using Local Attention Masks [Project Page] [Paper] Segmentation-aware convolution filters are invariant to b

144 Jun 29, 2022
Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition - NeurIPS2021

Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition Project Page | Video | Paper Implementation for Neural-PIL. A novel method wh

Computergraphics (University of Tübingen) 64 Dec 29, 2022
Alignment Attention Fusion framework for Few-Shot Object Detection

AAF framework Framework generalities This repository contains the code of the AAF framework proposed in this paper. The main idea behind this work is

Pierre Le Jeune 20 Dec 16, 2022
Projecting interval uncertainty through the discrete Fourier transform

Projecting interval uncertainty through the discrete Fourier transform This repo

1 Mar 02, 2022
[ECCV 2020] XingGAN for Person Image Generation

Contents XingGAN or CrossingGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evaluation Acknowl

Hao Tang 218 Oct 29, 2022
A modular, research-friendly framework for high-performance and inference of sequence models at many scales

T5X T5X is a modular, composable, research-friendly framework for high-performance, configurable, self-service training, evaluation, and inference of

Google Research 1.1k Jan 08, 2023
Azion the best solution of Edge Computing in the world.

Azion Edge Function docker action Create or update an Edge Functions on Azion Edge Nodes. The domain name is the key for decision to a create or updat

8 Jul 16, 2022
QuakeLabeler is a Python package to create and manage your seismic training data, processes, and visualization in a single place — so you can focus on building the next big thing.

QuakeLabeler Quake Labeler was born from the need for seismologists and developers who are not AI specialists to easily, quickly, and independently bu

Hao Mai 15 Nov 04, 2022
Implementation for NeurIPS 2021 Submission: SparseFed

READ THIS FIRST This repo is an anonymized version of an existing repository of GitHub, for the AIStats 2021 submission: SparseFed: Mitigating Model P

2 Jun 15, 2022
Pytorch implementation for DFN: Distributed Feedback Network for Single-Image Deraining.

DFN:Distributed Feedback Network for Single-Image Deraining Abstract Recently, deep convolutional neural networks have achieved great success for sing

6 Nov 05, 2022
[CVPR'22] Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast

wseg Overview The Pytorch implementation of Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast. [arXiv] Though image-level weakly

Ye Du 96 Dec 30, 2022
MAU: A Motion-Aware Unit for Video Prediction and Beyond, NeurIPS2021

MAU (NeurIPS2021) Zheng Chang, Xinfeng Zhang, Shanshe Wang, Siwei Ma, Yan Ye, Xinguang Xiang, Wen GAo. Official PyTorch Code for "MAU: A Motion-Aware

ZhengChang 20 Nov 25, 2022
Pre-Training Graph Neural Networks for Cold-Start Users and Items Representation.

Pretrain-Recsys This is our Tensorflow implementation for our WSDM 2021 paper: Bowen Hao, Jing Zhang, Hongzhi Yin, Cuiping Li, Hong Chen. Pre-Training

30 Nov 14, 2022
Calculates carbon footprint based on fuel mix and discharge profile at the utility selected. Can create graphs and tabular output for fuel mix based on input file of series of power drawn over a period of time.

carbon-footprint-calculator Conda distribution ~/anaconda3/bin/conda install anaconda-client conda-build ~/anaconda3/bin/conda config --set anaconda_u

Seattle university Renewable energy research 7 Sep 26, 2022
Face detection using deep learning.

Face Detection Docker Solution Using Faster R-CNN Dockerface is a deep learning face detector. It deploys a trained Faster R-CNN network on Caffe thro

Nataniel Ruiz 181 Dec 19, 2022
Python Interview Questions

Python Interview Questions Clone the code to your computer. You need to understand the code in main.py and modify the content in if __name__ =='__main

ClassmateLin 575 Dec 28, 2022
Hyperopt for solving CIFAR-100 with a convolutional neural network (CNN) built with Keras and TensorFlow, GPU backend

Hyperopt for solving CIFAR-100 with a convolutional neural network (CNN) built with Keras and TensorFlow, GPU backend This project acts as both a tuto

Guillaume Chevalier 103 Jul 22, 2022