This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model inference.

Overview

PyTorch Infer Utils

This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model inference.

To install

git clone https://github.com/gorodnitskiy/pytorch_infer_utils.git
pip install /path/to/pytorch_infer_utils/

Export PyTorch model to ONNX

  • Check model for denormal weights to achieve better performance. Use load_weights_rounded_model func to load model with weights rounding:
    from pytorch_infer_utils import load_weights_rounded_model
    
    model = ModelClass()
    load_weights_rounded_model(
        model,
        "/path/to/model_state_dict",
        map_location=map_location
    )
    
  • Use ONNXExporter.torch2onnx method to export pytorch model to ONNX:
    from pytorch_infer_utils import ONNXExporter
    
    model = ModelClass()
    model.load_state_dict(
        torch.load("/path/to/model_state_dict", map_location=map_location)
    )
    model.eval()
    
    exporter = ONNXExporter()
    input_shapes = [-1, 3, 224, 224] # -1 means that is dynamic shape
    exporter.torch2onnx(model, "/path/to/model.onnx", input_shapes)
    
  • Use ONNXExporter.optimize_onnx method to optimize ONNX via onnxoptimizer:
    from pytorch_infer_utils import ONNXExporter
    
    exporter = ONNXExporter()
    exporter.optimize_onnx("/path/to/model.onnx", "/path/to/optimized_model.onnx")
    
  • Use ONNXExporter.optimize_onnx_sim method to optimize ONNX via onnx-simplifier. Be careful with onnx-simplifier not to lose dynamic shapes.
    from pytorch_infer_utils import ONNXExporter
    
    exporter = ONNXExporter()
    exporter.optimize_onnx_sim("/path/to/model.onnx", "/path/to/optimized_model.onnx")
    
  • Also, a method combined the above methods is available ONNXExporter.torch2optimized_onnx:
    from pytorch_infer_utils import ONNXExporter
    
    model = ModelClass()
    model.load_state_dict(
        torch.load("/path/to/model_state_dict", map_location=map_location)
    )
    model.eval()
    
    exporter = ONNXExporter()
    input_shapes = [-1, 3, -1, -1] # -1 means that is dynamic shape
    exporter.torch2optimized_onnx(model, "/path/to/model.onnx", input_shapes)
    
  • Other params that can be used in class initialization:
    • default_shapes: default shapes if dimension is dynamic, default = [1, 3, 224, 224]
    • onnx_export_params:
      • export_params: store the trained parameter weights inside the model file, default = True
      • do_constant_folding: whether to execute constant folding for optimization, default = True
      • input_names: the model's input names, default = ["input"]
      • output_names: the model's output names, default = ["output"]
      • opset_version: the ONNX version to export the model to, default = 11
    • onnx_optimize_params:
      • fixed_point: use fixed point, default = False
      • passes: optimization passes, default = [ "eliminate_deadend", "eliminate_duplicate_initializer", "eliminate_identity", "eliminate_if_with_const_cond", "eliminate_nop_cast", "eliminate_nop_dropout", "eliminate_nop_flatten", "eliminate_nop_monotone_argmax", "eliminate_nop_pad", "eliminate_nop_transpose", "eliminate_unused_initializer", "extract_constant_to_initializer", "fuse_add_bias_into_conv", "fuse_bn_into_conv", "fuse_consecutive_concats", "fuse_consecutive_log_softmax", "fuse_consecutive_reduce_unsqueeze", "fuse_consecutive_squeezes", "fuse_consecutive_transposes", "fuse_matmul_add_bias_into_gemm", "fuse_pad_into_conv", "fuse_transpose_into_gemm", "lift_lexical_references", "nop" ]

Export ONNX to TensorRT

  • Check TensorRT health via check_tensorrt_health func
  • Use TRTEngineBuilder.build_engine method to export ONNX to TensorRT:
    from pytorch_infer_utils import TRTEngineBuilder
    
    exporter = TRTEngineBuilder()
    # get engine by itself
    engine = exporter.build_engine("/path/to/model.onnx")
    # or save engine to /path/to/model.trt
    exporter.build_engine("/path/to/model.onnx", engine_path="/path/to/model.trt")
    
  • fp16_mode is available:
    from pytorch_infer_utils import TRTEngineBuilder
    
    exporter = TRTEngineBuilder()
    engine = exporter.build_engine("/path/to/model.onnx", fp16_mode=True)
    
  • int8_mode is available. It requires calibration_set of images as List[Any], load_image_func - func to correctly read and process images, max_image_shape - max image size as [C, H, W] to allocate correct size of memory:
    from pytorch_infer_utils import TRTEngineBuilder
    
    exporter = TRTEngineBuilder()
    engine = exporter.build_engine(
        "/path/to/model.onnx",
        int8_mode=True,
        calibration_set=calibration_set,
        max_image_shape=max_image_shape,
        load_image_func=load_image_func,
    )
    
  • Also, additional params for builder config builder.create_builder_config can be put to kwargs.
  • Other params that can be used in class initialization:
    • opt_shape_dict: optimal shapes, default = {'input': [[1, 3, 224, 224], [1, 3, 224, 224], [1, 3, 224, 224]]}
    • max_workspace_size: max workspace size, default = [1, 30]
    • stream_batch_size: batch size for forward network during transferring to int8, default = 100
    • cache_file: int8_mode cache filename, default = "model.trt.int8calibration"

Inference via onnxruntime on CPU and onnx_tensort on GPU

  • Base class ONNXWrapper __init__ has the structure as below:
    def __init__(
        self,
        onnx_path: str,
        gpu_device_id: Optional[int] = None,
        intra_op_num_threads: Optional[int] = 0,
        inter_op_num_threads: Optional[int] = 0,
    ) -> None:
        """
        :param onnx_path: onnx-file path, required
        :param gpu_device_id: gpu device id to use, default = 0
        :param intra_op_num_threads: ort_session_options.intra_op_num_threads,
            to let onnxruntime choose by itself is required 0, default = 0
        :param inter_op_num_threads: ort_session_options.inter_op_num_threads,
            to let onnxruntime choose by itself is required 0, default = 0
        :type onnx_path: str
        :type gpu_device_id: int
        :type intra_op_num_threads: int
        :type inter_op_num_threads: int
        """
        if gpu_device_id is None:
            import onnxruntime
    
            self.is_using_tensorrt = False
            ort_session_options = onnxruntime.SessionOptions()
            ort_session_options.intra_op_num_threads = intra_op_num_threads
            ort_session_options.inter_op_num_threads = inter_op_num_threads
            self.ort_session = onnxruntime.InferenceSession(
                onnx_path, ort_session_options
            )
    
        else:
            import onnx
            import onnx_tensorrt.backend as backend
    
            self.is_using_tensorrt = True
            model_proto = onnx.load(onnx_path)
            for gr_input in model_proto.graph.input:
                gr_input.type.tensor_type.shape.dim[0].dim_value = 1
    
            self.engine = backend.prepare(
                model_proto, device=f"CUDA:{gpu_device_id}"
            )
    
  • ONNXWrapper.run method assumes the use of such a structure:
    img = self._process_img_(img)
    if self.is_using_tensorrt:
        preds = self.engine.run(img)
    else:
        ort_inputs = {self.ort_session.get_inputs()[0].name: img}
        preds = self.ort_session.run(None, ort_inputs)
    
    preds = self._process_preds_(preds)
    

Inference via onnxruntime on CPU and TensorRT on GPU

  • Base class TRTWrapper __init__ has the structure as below:
    def __init__(
        self,
        onnx_path: Optional[str] = None,
        trt_path: Optional[str] = None,
        gpu_device_id: Optional[int] = None,
        intra_op_num_threads: Optional[int] = 0,
        inter_op_num_threads: Optional[int] = 0,
        fp16_mode: bool = False,
    ) -> None:
        """
        :param onnx_path: onnx-file path, default = None
        :param trt_path: onnx-file path, default = None
        :param gpu_device_id: gpu device id to use, default = 0
        :param intra_op_num_threads: ort_session_options.intra_op_num_threads,
            to let onnxruntime choose by itself is required 0, default = 0
        :param inter_op_num_threads: ort_session_options.inter_op_num_threads,
            to let onnxruntime choose by itself is required 0, default = 0
        :param fp16_mode: use fp16_mode if class initializes only with
            onnx_path on GPU, default = False
        :type onnx_path: str
        :type trt_path: str
        :type gpu_device_id: int
        :type intra_op_num_threads: int
        :type inter_op_num_threads: int
        :type fp16_mode: bool
        """
        if gpu_device_id is None:
            import onnxruntime
    
            self.is_using_tensorrt = False
            ort_session_options = onnxruntime.SessionOptions()
            ort_session_options.intra_op_num_threads = intra_op_num_threads
            ort_session_options.inter_op_num_threads = inter_op_num_threads
            self.ort_session = onnxruntime.InferenceSession(
                onnx_path, ort_session_options
            )
    
        else:
            self.is_using_tensorrt = True
            if trt_path is None:
                builder = TRTEngineBuilder()
                trt_path = builder.build_engine(onnx_path, fp16_mode=fp16_mode)
    
            self.trt_session = TRTRunWrapper(trt_path)
    
  • TRTWrapper.run method assumes the use of such a structure:
    img = self._process_img_(img)
    if self.is_using_tensorrt:
        preds = self.trt_session.run(img)
    else:
        ort_inputs = {self.ort_session.get_inputs()[0].name: img}
        preds = self.ort_session.run(None, ort_inputs)
    
    preds = self._process_preds_(preds)
    

Environment

TensorRT

  • TensorRT installing guide is here
  • Required CUDA-Runtime, CUDA-ToolKit
  • Also, required additional python packages not included to setup.cfg (it depends upon CUDA environment version):
    • pycuda
    • nvidia-tensorrt
    • nvidia-pyindex

onnx_tensorrt

  • onnx_tensorrt requires cuda-runtime and tensorrt.
  • To install:
    git clone --depth 1 --branch 21.02 https://github.com/onnx/onnx-tensorrt.git
    cd onnx-tensorrt
    cp -r onnx_tensorrt /usr/local/lib/python3.8/dist-packages
    cd ..
    rm -rf onnx-tensorrt
    
Owner
Alex Gorodnitskiy
Computer Vision Engineer 🤖
Alex Gorodnitskiy
SenseNet is a sensorimotor and touch simulator for deep reinforcement learning research

SenseNet is a sensorimotor and touch simulator for deep reinforcement learning research

59 Feb 25, 2022
Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo"

dblmahmc Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo" Requirements: https://github.com

1 Dec 17, 2021
This is a computer vision based implementation of the popular childhood game 'Hand Cricket/Odd or Even' in python

Hand Cricket Table of Content Overview Installation Game rules Project Details Future scope Overview This is a computer vision based implementation of

Abhinav R Nayak 6 Jan 12, 2022
A python script to lookup Passport Index Dataset

visa-cli A python script to lookup Passport Index Dataset Installation pip install visa-cli Usage usage: visa-cli [-h] [-d DESTINATION_COUNTRY] [-f]

rand-net 16 Oct 18, 2022
Tutorial in Python targeted at Epidemiologists. Will discuss the basics of analysis in Python 3

Python-for-Epidemiologists This repository is an introduction to epidemiology analyses in Python. Additionally, the tutorials for my library zEpid are

Paul Zivich 120 Nov 17, 2022
This is the official PyTorch implementation of our paper: "Artistic Style Transfer with Internal-external Learning and Contrastive Learning".

Artistic Style Transfer with Internal-external Learning and Contrastive Learning This is the official PyTorch implementation of our paper: "Artistic S

51 Dec 20, 2022
Nvdiffrast - Modular Primitives for High-Performance Differentiable Rendering

Nvdiffrast – Modular Primitives for High-Performance Differentiable Rendering Modular Primitives for High-Performance Differentiable Rendering Samuli

NVIDIA Research Projects 675 Jan 06, 2023
A PyTorch Implementation of Single Shot MultiBox Detector

SSD: Single Shot MultiBox Object Detector, in PyTorch A PyTorch implementation of Single Shot MultiBox Detector from the 2016 paper by Wei Liu, Dragom

Max deGroot 4.8k Jan 07, 2023
A Deep Learning based project for creating line art portraits.

ArtLine The main aim of the project is to create amazing line art portraits. Sounds Intresting,let's get to the pictures!! Model-(Smooth) Model-(Quali

Vijish Madhavan 3.3k Jan 07, 2023
Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative adversarial networks (GAN)

Flickr-Faces-HQ Dataset (FFHQ) Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative

NVIDIA Research Projects 2.9k Dec 28, 2022
Align before Fuse: Vision and Language Representation Learning with Momentum Distillation

This is the official PyTorch implementation of the ALBEF paper [Blog]. This repository supports pre-training on custom datasets, as well as finetuning on VQA, SNLI-VE, NLVR2, Image-Text Retrieval on

Salesforce 805 Jan 09, 2023
The repository is for safe reinforcement learning baselines.

Safe-Reinforcement-Learning-Baseline The repository is for Safe Reinforcement Learning (RL) research, in which we investigate various safe RL baseline

172 Dec 19, 2022
RL Algorithms with examples in Python / Pytorch / Unity ML agents

Reinforcement Learning Project This project was created to make it easier to get started with Reinforcement Learning. It now contains: An implementati

Rogier Wachters 3 Aug 19, 2022
'A C2C E-COMMERCE TRUST MODEL BASED ON REPUTATION' Python implementation

Project description A library providing functionalities to calculate reputation and degree of trust on C2C ecommerce platforms. The work is fully base

Davide Bigotti 2 Dec 14, 2022
Sequence modeling benchmarks and temporal convolutional networks

Sequence Modeling Benchmarks and Temporal Convolutional Networks (TCN) This repository contains the experiments done in the work An Empirical Evaluati

CMU Locus Lab 3.5k Jan 01, 2023
Wider-Yolo Kütüphanesi ile Yüz Tespit Uygulamanı Yap

WIDER-YOLO : Yüz Tespit Uygulaması Yap Wider-Yolo Kütüphanesinin Kullanımı 1. Wider Face Veri Setini İndir Train Dataset Val Dataset Test Dataset Not:

Kadir Nar 6 Aug 22, 2022
PuppetGAN - Cross-Domain Feature Disentanglement and Manipulation just got way better! 🚀

Better Cross-Domain Feature Disentanglement and Manipulation with Improved PuppetGAN Quite cool... Right? Introduction This repo contains a TensorFlow

Giorgos Karantonis 5 Aug 25, 2022
scalingscattering

Scaling The Scattering Transform : Deep Hybrid Networks This repository contains the experiments found in the paper: https://arxiv.org/abs/1703.08961

Edouard Oyallon 78 Dec 21, 2022
This project deploys a yolo fastest model in the form of tflite on raspberry 3b+. The model is from another repository of mine called -Trash-Classification-Car

Deploy-yolo-fastest-tflite-on-raspberry 觉得有用的话可以顺手点个star嗷 这个项目将垃圾分类小车中的tflite模型移植到了树莓派3b+上面。 该项目主要是为了记录在树莓派部署yolo fastest tflite的流程 (之后有时间会尝试用C++部署来提升

7 Aug 16, 2022
pytorch implementation of fast-neural-style

fast-neural-style 🌇 🚀 NOTICE: This codebase is no longer maintained, please use the codebase from pytorch examples repository available at pytorch/e

Abhishek Kadian 405 Dec 15, 2022