Fine-grained Post-training for Improving Retrieval-based Dialogue Systems - NAACL 2021

Related tags

Deep LearningBERT_FP
Overview

Fine-grained Post-training for Multi-turn Response Selection

PWC

Implements the model described in the following paper Fine-grained Post-training for Improving Retrieval-based Dialogue Systems in NAACL-2021.

@inproceedings{han-etal-2021-fine,
title = "Fine-grained Post-training for Improving Retrieval-based Dialogue Systems",
author = "Han, Janghoon  and Hong, Taesuk  and Kim, Byoungjae  and Ko, Youngjoong  and Seo, Jungyun",
booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
month = jun, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2021.naacl-main.122", pages = "1549--1558",
}

This code is reimplemented as a fork of huggingface/transformers.

alt text

Setup and Dependencies

This code is implemented using PyTorch v1.8.0, and provides out of the box support with CUDA 11.2 Anaconda is the recommended to set up this codebase.

# https://pytorch.org
conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=11.1 -c pytorch -c conda-forge
pip install -r requirements.txt

Preparing Data and Checkpoints

Post-trained and fine-tuned Checkpoints

We provide following post-trained and fine-tuned checkpoints.

Data pkl for Fine-tuning (Response Selection)

We used the following data for post-training and fine-tuning

Original version for each dataset is availble in Ubuntu Corpus V1, Douban Corpus, and E-Commerce Corpus, respectively.

Fine-grained Post-Training

Making Data for post-training and fine-tuning
Data_processing.py

Post-training Examples

(Ubuntu Corpus V1, Douban Corpus, E-commerce Corpus)
python -u FPT/ubuntu_final.py --num_train_epochs 25
python -u FPT/douban_final.py --num_train_epochs 27
python -u FPT/e_commmerce_final.py --num_train_epochs 34

Fine-tuning Examples

(Ubuntu Corpus V1, Douban Corpus, E-commerce Corpus)
Taining
To train the model, set `--is_training`
python -u Fine-Tuning/Response_selection.py --task ubuntu --is_training
python -u Fine-Tuning/Response_selection.py --task douban --is_training
python -u Fine-Tuning/Response_selection.py --task e_commerce --is_training
Testing
python -u Fine-Tuning/Response_selection.py --task ubuntu
python -u Fine-Tuning/Response_selection.py --task douban 
python -u Fine-Tuning/Response_selection.py --task e_commerce

Training Response Selection Models

Model Arguments

Fine-grained post-training
task_name data_dir checkpoint_path
ubuntu ubuntu_data/ubuntu_post_train.pkl FPT/PT_checkpoint/ubuntu/bert.pt
douban douban_data/douban_post_train.pkl FPT/PT_checkpoint/douban/bert.pt
e-commerce e_commerce_data/e_commerce_post_train.pkl FPT/PT_checkpoint/e_commerce/bert.pt
Fine-tuning
task_name data_dir checkpoint_path
ubuntu ubuntu_data/ubuntu_dataset_1M.pkl Fine-Tuning/FT_checkpoint/ubuntu.0.pt
douban douban_data/douban_dataset_1M.pkl Fine-Tuning/FT_checkpoint/douban.0.pt
e-commerce e_commerce_data/e_commerce_dataset_1M.pkl Fine-Tuning/FT_checkpoint/e_commerce.0.pt

Performance

We provide model checkpoints of BERT_FP, which obtained new state-of-the-art, for each dataset.

Ubuntu [email protected] [email protected] [email protected]
[BERT_FP] 0.911 0.962 0.994
Douban MAP MRR [email protected] [email protected] [email protected] [email protected]
[BERT_FP] 0.644 0.680 0.512 0.324 0.542 0.870
E-Commerce [email protected] [email protected] [email protected]
[BERT_FP] 0.870 0.956 0.993
Owner
Janghoon Han
NLP Researcher
Janghoon Han
QueryFuzz implements a metamorphic testing approach to test Datalog engines.

Datalog is a popular query language with applications in several domains. Like any complex piece of software, Datalog engines may contain bugs. The mo

34 Sep 10, 2022
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
HugsVision is a easy to use huggingface wrapper for state-of-the-art computer vision

HugsVision is an open-source and easy to use all-in-one huggingface wrapper for computer vision. The goal is to create a fast, flexible and user-frien

Labrak Yanis 166 Nov 27, 2022
General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends)

General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends). Blazing fast, mobile-enabled, asynchronous and optimized for advanced GPU data processing usec

The Kompute Project 1k Jan 06, 2023
Zsseg.baseline - Zero-Shot Semantic Segmentation

This repo is for our paper A Simple Baseline for Zero-shot Semantic Segmentation

98 Dec 20, 2022
Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders"

DECA Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders". All the code is writte

23 Dec 01, 2022
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

287 Dec 21, 2022
Fuzzer for Linux Kernel Drivers

difuze: Fuzzer for Linux Kernel Drivers This repo contains all the sources (including setup scripts), you need to get difuze up and running. Tested on

seclab 344 Dec 27, 2022
This repository contains the code for our fast polygonal building extraction from overhead images pipeline.

Polygonal Building Segmentation by Frame Field Learning We add a frame field output to an image segmentation neural network to improve segmentation qu

Nicolas Girard 186 Jan 04, 2023
Data from "HateCheck: Functional Tests for Hate Speech Detection Models" (Röttger et al., ACL 2021)

In this repo, you can find the data from our ACL 2021 paper "HateCheck: Functional Tests for Hate Speech Detection Models". "test_suite_cases.csv" con

Paul Röttger 43 Nov 11, 2022
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods

Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods Introduction Graph Neural Networks (GNNs) have demonstrated

37 Dec 15, 2022
PyTorch implementation of DreamerV2 model-based RL algorithm

PyDreamer Reimplementation of DreamerV2 model-based RL algorithm in PyTorch. The official DreamerV2 implementation can be found here. Features ... Run

118 Dec 15, 2022
General-purpose program synthesiser

DeepSynth General-purpose program synthesiser. This is the repository for the code of the paper "Scaling Neural Program Synthesis with Distribution-ba

Nathanaël Fijalkow 24 Oct 23, 2022
Optimized code based on M2 for faster image captioning training

Transformer Captioning This repository contains the code for Transformer-based image captioning. Based on meshed-memory-transformer, we further optimi

lyricpoem 16 Dec 16, 2022
Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras (ICCV 2021)

N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Gra

32 Dec 26, 2022
Source code of AAAI 2022 paper "Towards End-to-End Image Compression and Analysis with Transformers".

Towards End-to-End Image Compression and Analysis with Transformers Source code of our AAAI 2022 paper "Towards End-to-End Image Compression and Analy

37 Dec 21, 2022
Object detection using yolo-tiny model and opencv used as backend

Object detection Algorithm used : Yolo algorithm Backend : opencv Library required: opencv = 4.5.4-dev' Quick Overview about structure 1) main.py Load

2 Jul 06, 2022
Package to compute Mauve, a similarity score between neural text and human text. Install with `pip install mauve-text`.

MAUVE MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE

Krishna Pillutla 182 Jan 02, 2023
DGN pymarl - Implementation of DGN on Pymarl, which could be trained by VDN or QMIX

This is the implementation of DGN on Pymarl, which could be trained by VDN or QM

4 Nov 23, 2022
Source for the paper "Universal Activation Function for machine learning"

Universal Activation Function Tensorflow and Pytorch source code for the paper Yuen, Brosnan, Minh Tu Hoang, Xiaodai Dong, and Tao Lu. "Universal acti

4 Dec 03, 2022