Semantic Segmentation in Pytorch

Related tags

Deep Learningsemseg
Overview

PyTorch Semantic Segmentation

Introduction

This repository is a PyTorch implementation for semantic segmentation / scene parsing. The code is easy to use for training and testing on various datasets. The codebase mainly uses ResNet50/101/152 as backbone and can be easily adapted to other basic classification structures. Implemented networks including PSPNet and PSANet, which ranked 1st places in ImageNet Scene Parsing Challenge 2016 @ECCV16, LSUN Semantic Segmentation Challenge 2017 @CVPR17 and WAD Drivable Area Segmentation Challenge 2018 @CVPR18. Sample experimented datasets are ADE20K, PASCAL VOC 2012 and Cityscapes.

Update

  • 2020.05.15: Branch master, use official nn.SyncBatchNorm, only multiprocessing training is supported, tested with pytorch 1.4.0.
  • 2019.05.29: Branch 1.0.0, both multithreading training (nn.DataParallel) and multiprocessing training (nn.parallel.DistributedDataParallel) (recommended) are supported. And the later one is much faster. Use syncbn from EncNet and apex, tested with pytorch 1.0.0.

Usage

  1. Highlight:

  2. Requirement:

    • Hardware: 4-8 GPUs (better with >=11G GPU memory)
    • Software: PyTorch>=1.1.0, Python3, tensorboardX,
  3. Clone the repository:

    git clone https://github.com/hszhao/semseg.git
  4. Train:

    • Download related datasets and symlink the paths to them as follows (you can alternatively modify the relevant paths specified in folder config):

      cd semseg
      mkdir -p dataset
      ln -s /path_to_ade20k_dataset dataset/ade20k
      
    • Download ImageNet pre-trained models and put them under folder initmodel for weight initialization. Remember to use the right dataset format detailed in FAQ.md.

    • Specify the gpu used in config then do training:

      sh tool/train.sh ade20k pspnet50
    • If you are using SLURM for nodes manager, uncomment lines in train.sh and then do training:

      sbatch tool/train.sh ade20k pspnet50
  5. Test:

    • Download trained segmentation models and put them under folder specified in config or modify the specified paths.

    • For full testing (get listed performance):

      sh tool/test.sh ade20k pspnet50
    • Quick demo on one image:

      PYTHONPATH=./ python tool/demo.py --config=config/ade20k/ade20k_pspnet50.yaml --image=figure/demo/ADE_val_00001515.jpg TEST.scales '[1.0]'
  6. Visualization: tensorboardX incorporated for better visualization.

    tensorboard --logdir=exp/ade20k
  7. Other:

    • Resources: GoogleDrive LINK contains shared models, visual predictions and data lists.
    • Models: ImageNet pre-trained models and trained segmentation models can be accessed. Note that our ImageNet pretrained models are slightly different from original ResNet implementation in the beginning part.
    • Predictions: Visual predictions of several models can be accessed.
    • Datasets: attributes (names and colors) are in folder dataset and some sample lists can be accessed.
    • Some FAQs: FAQ.md.
    • Former video predictions: high accuracy -- PSPNet, PSANet; high efficiency -- ICNet.

Performance

Description: mIoU/mAcc/aAcc stands for mean IoU, mean accuracy of each class and all pixel accuracy respectively. ss denotes single scale testing and ms indicates multi-scale testing. Training time is measured on a sever with 8 GeForce RTX 2080 Ti. General parameters cross different datasets are listed below:

  • Train Parameters: sync_bn(True), scale_min(0.5), scale_max(2.0), rotate_min(-10), rotate_max(10), zoom_factor(8), ignore_label(255), aux_weight(0.4), batch_size(16), base_lr(1e-2), power(0.9), momentum(0.9), weight_decay(1e-4).
  • Test Parameters: ignore_label(255), scales(single: [1.0], multiple: [0.5 0.75 1.0 1.25 1.5 1.75]).
  1. ADE20K: Train Parameters: classes(150), train_h(473/465-PSP/A), train_w(473/465-PSP/A), epochs(100). Test Parameters: classes(150), test_h(473/465-PSP/A), test_w(473/465-PSP/A), base_size(512).

    • Setting: train on train (20210 images) set and test on val (2000 images) set.
    Network mIoU/mAcc/aAcc(ss) mIoU/mAcc/pAcc(ms) Training Time
    PSPNet50 0.4189/0.5227/0.8039. 0.4284/0.5266/0.8106. 14h
    PSANet50 0.4229/0.5307/0.8032. 0.4305/0.5312/0.8101. 14h
    PSPNet101 0.4310/0.5375/0.8107. 0.4415/0.5426/0.8172. 20h
    PSANet101 0.4337/0.5385/0.8102. 0.4414/0.5392/0.8170. 20h
  2. PSACAL VOC 2012: Train Parameters: classes(21), train_h(473/465-PSP/A), train_w(473/465-PSP/A), epochs(50). Test Parameters: classes(21), test_h(473/465-PSP/A), test_w(473/465-PSP/A), base_size(512).

    • Setting: train on train_aug (10582 images) set and test on val (1449 images) set.
    Network mIoU/mAcc/aAcc(ss) mIoU/mAcc/pAcc(ms) Training Time
    PSPNet50 0.7705/0.8513/0.9489. 0.7802/0.8580/0.9513. 3.3h
    PSANet50 0.7725/0.8569/0.9491. 0.7787/0.8606/0.9508. 3.3h
    PSPNet101 0.7907/0.8636/0.9534. 0.7963/0.8677/0.9550. 5h
    PSANet101 0.7870/0.8642/0.9528. 0.7966/0.8696/0.9549. 5h
  3. Cityscapes: Train Parameters: classes(19), train_h(713/709-PSP/A), train_w(713/709-PSP/A), epochs(200). Test Parameters: classes(19), test_h(713/709-PSP/A), test_w(713/709-PSP/A), base_size(2048).

    • Setting: train on fine_train (2975 images) set and test on fine_val (500 images) set.
    Network mIoU/mAcc/aAcc(ss) mIoU/mAcc/pAcc(ms) Training Time
    PSPNet50 0.7730/0.8431/0.9597. 0.7838/0.8486/0.9617. 7h
    PSANet50 0.7745/0.8461/0.9600. 0.7818/0.8487/0.9622. 7.5h
    PSPNet101 0.7863/0.8577/0.9614. 0.7929/0.8591/0.9638. 10h
    PSANet101 0.7842/0.8599/0.9621. 0.7940/0.8631/0.9644. 10.5h

Citation

If you find the code or trained models useful, please consider citing:

@misc{semseg2019,
  author={Zhao, Hengshuang},
  title={semseg},
  howpublished={\url{https://github.com/hszhao/semseg}},
  year={2019}
}
@inproceedings{zhao2017pspnet,
  title={Pyramid Scene Parsing Network},
  author={Zhao, Hengshuang and Shi, Jianping and Qi, Xiaojuan and Wang, Xiaogang and Jia, Jiaya},
  booktitle={CVPR},
  year={2017}
}
@inproceedings{zhao2018psanet,
  title={{PSANet}: Point-wise Spatial Attention Network for Scene Parsing},
  author={Zhao, Hengshuang and Zhang, Yi and Liu, Shu and Shi, Jianping and Loy, Chen Change and Lin, Dahua and Jia, Jiaya},
  booktitle={ECCV},
  year={2018}
}

Question

Some FAQ.md collected. You are welcome to send pull requests or give some advices. Contact information: hengshuangzhao at gmail.com.

Owner
Hengshuang Zhao
Hengshuang Zhao
IA for recognising Traffic Signs using Keras [Tensorflow]

Traffic Signs Recognition ⚠️ 🚦 Fundamentals of Intelligent Systems Introduction 📄 Development of a neural network capable of recognizing nine differ

Sebastián Fernández García 2 Dec 19, 2022
Simple embedding based text classifier inspired by fastText, implemented in tensorflow

FastText in Tensorflow This project is based on the ideas in Facebook's FastText but implemented in Tensorflow. However, it is not an exact replica of

Alan Patterson 306 Dec 02, 2022
Code for the Image similarity challenge.

ISC 2021 This repository contains code for the Image Similarity Challenge 2021. Getting started The docs subdirectory has step-by-step instructions on

Facebook Research 173 Dec 12, 2022
Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe

Traductor de señas Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe Requerimientos 🔧 Python 3.8 o inferior para evitar

Jahaziel Hernandez Hoyos 3 Nov 12, 2022
Keyword spotting on Arm Cortex-M Microcontrollers

Keyword spotting for Microcontrollers This repository consists of the tensorflow models and training scripts used in the paper: Hello Edge: Keyword sp

Arm Software 1k Dec 30, 2022
Train an RL agent to execute natural language instructions in a 3D Environment (PyTorch)

Gated-Attention Architectures for Task-Oriented Language Grounding This is a PyTorch implementation of the AAAI-18 paper: Gated-Attention Architecture

Devendra Chaplot 234 Nov 05, 2022
Build Graph Nets in Tensorflow

Graph Nets library Graph Nets is DeepMind's library for building graph networks in Tensorflow and Sonnet. Contact DeepMind 5.2k Jan 05, 2023

Detecting Blurred Ground-based Sky/Cloud Images

Detecting Blurred Ground-based Sky/Cloud Images With the spirit of reproducible research, this repository contains all the codes required to produce t

1 Oct 20, 2021
Tensorflow/Keras Plug-N-Play Deep Learning Models Compilation

DeepBay This project was created with the objective of compile Machine Learning Architectures created using Tensorflow or Keras. The architectures mus

Whitman Bohorquez 4 Sep 26, 2022
An e-commerce company wants to segment its customers and determine marketing strategies according to these segments.

customer_segmentation_with_rfm Business Problem : An e-commerce company wants to

Buse Yıldırım 3 Jan 06, 2022
Copy Paste positive polyp using poisson image blending for medical image segmentation

Copy Paste positive polyp using poisson image blending for medical image segmentation According poisson image blending I've completely used it for bio

Phạm Vũ Hùng 2 Oct 19, 2021
TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently.

Adversarial Chess TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently. Requirements To run

Muthu Chidambaram 30 Sep 07, 2021
Using VideoBERT to tackle video prediction

VideoBERT This repo reproduces the results of VideoBERT (https://arxiv.org/pdf/1904.01766.pdf). Inspiration was taken from https://github.com/MDSKUL/M

75 Dec 14, 2022
Eth brownie struct encoding example

eth-brownie struct encoding example Overview This repository contains an example of encoding a struct, so that it can be used in a function call, usin

Ittai Svidler 2 Mar 04, 2022
Official Pytorch implementation of "Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video", CVPR 2021

TCMR: Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video Qualtitative result Paper teaser video Introduction This r

Hongsuk Choi 215 Jan 06, 2023
Pytorch implementation for "Implicit Feature Alignment: Learn to Convert Text Recognizer to Text Spotter".

Implicit Feature Alignment: Learn to Convert Text Recognizer to Text Spotter This is a pytorch-based implementation for paper Implicit Feature Alignme

wangtianwei 61 Nov 12, 2022
I explore rock vs. mine prediction using a SONAR dataset

I explore rock vs. mine prediction using a SONAR dataset. Using a Logistic Regression Model for my prediction algorithm, I intend on predicting what an object is based on supervised learning.

Jeff Shen 1 Jan 11, 2022
Image-Scaling Attacks and Defenses

Image-Scaling Attacks & Defenses This repository belongs to our publication: Erwin Quiring, David Klein, Daniel Arp, Martin Johns and Konrad Rieck. Ad

Erwin Quiring 163 Nov 21, 2022
Official PyTorch implementation of Segmenter: Transformer for Semantic Segmentation

Segmenter: Transformer for Semantic Segmentation Segmenter: Transformer for Semantic Segmentation by Robin Strudel*, Ricardo Garcia*, Ivan Laptev and

594 Jan 06, 2023