Pytorch library for fast transformer implementations

Overview

Fast Transformers

Transformers are very successful models that achieve state of the art performance in many natural language tasks. However, it is very difficult to scale them to long sequences due to the quadratic scaling of self-attention.

This library was developed for our research on fast attention for transformers. You can find a list of our papers in the docs as well as related papers and papers that we have implemented.

Quick-start

The following code builds a transformer with softmax attention and one with linear attention and compares the time required by each to encode a sequence with 1000 elements.

import torch
from fast_transformers.builders import TransformerEncoderBuilder

# Create the builder for our transformers
builder = TransformerEncoderBuilder.from_kwargs(
    n_layers=8,
    n_heads=8,
    query_dimensions=64,
    value_dimensions=64,
    feed_forward_dimensions=1024
)

# Build a transformer with softmax attention
builder.attention_type = "full"
softmax_model = builder.get()

# Build a transformer with linear attention
builder.attention_type = "linear"
linear_model = builder.get()

# Construct the dummy input
X = torch.rand(10, 1000, 8*64)

# Prepare everythin for CUDA
X = X.cuda()
softmax_model.cuda()
softmax_model.eval()
linear_model.cuda()
linear_model.eval()

# Warmup the GPU
with torch.no_grad():
    softmax_model(X)
    linear_model(X)
torch.cuda.synchronize()

# Measure the execution time
softmax_start = torch.cuda.Event(enable_timing=True)
softmax_end = torch.cuda.Event(enable_timing=True)
linear_start = torch.cuda.Event(enable_timing=True)
linear_end = torch.cuda.Event(enable_timing=True)

with torch.no_grad():
    softmax_start.record()
    y = softmax_model(X)
    softmax_end.record()
    torch.cuda.synchronize()
    print("Softmax: ", softmax_start.elapsed_time(softmax_end), "ms")
    # Softmax: 144 ms (on a GTX1080Ti)

with torch.no_grad():
    linear_start.record()
    y = linear_model(X)
    linear_end.record()
    torch.cuda.synchronize()
    print("Linear: ", linear_start.elapsed_time(linear_end), "ms")
    # Linear: 68 ms (on a GTX1080Ti)

Dependencies & Installation

The fast transformers library has the following dependencies:

  • PyTorch
  • C++ toolchain
  • CUDA toolchain (if you want to compile for GPUs)

For most machines installation should be as simple as:

pip install --user pytorch-fast-transformers

Note: macOS users should ensure they have llvm and libomp installed. Using the homebrew package manager, this can be accomplished by running brew install llvm libomp.

Documentation

There exists a dedicated documentation site but you are also encouraged to read the source code.

Research

Ours

To read about the theory behind some attention implementations in this library we encourage you to follow our research.

  • Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention (2006.16236)
  • Fast Transformers with Clustered Attention (2007.04825)

If you found our research helpful or influential please consider citing

@inproceedings{katharopoulos_et_al_2020,
    author = {Katharopoulos, A. and Vyas, A. and Pappas, N. and Fleuret, F.},
    title = {Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention},
    booktitle = {Proceedings of the International Conference on Machine Learning (ICML)},
    year = {2020}
}

@article{vyas_et_al_2020,
    author={Vyas, A. and Katharopoulos, A. and Fleuret, F.},
    title={Fast Transformers with Clustered Attention},
    booktitle = {Proceedings of the International Conference on Neural Information Processing Systems (NeurIPS)},
    year={2020}
}

By others

  • Efficient Attention: Attention with Linear Complexities (1812.01243)
  • Linformer: Self-Attention with Linear Complexity (2006.04768)
  • Reformer: The Efficient Transformer (2001.04451)

Support, License and Copyright

This software is distributed with the MIT license which pretty much means that you can use it however you want and for whatever reason you want. All the information regarding support, copyright and the license can be found in the LICENSE file in the repository.

Owner
Idiap Research Institute
Idiap Research Institute
Video Instance Segmentation using Inter-Frame Communication Transformers (NeurIPS 2021)

Video Instance Segmentation using Inter-Frame Communication Transformers (NeurIPS 2021) Paper Video Instance Segmentation using Inter-Frame Communicat

Sukjun Hwang 81 Dec 29, 2022
【CVPR 2021, Variational Inference Framework, PyTorch】 From Rain Generation to Rain Removal

From Rain Generation to Rain Removal (CVPR2021) Hong Wang, Zongsheng Yue, Qi Xie, Qian Zhao, Yefeng Zheng, and Deyu Meng [PDF&&Supplementary Material]

Hong Wang 48 Nov 23, 2022
[CVPR 2022] Thin-Plate Spline Motion Model for Image Animation.

[CVPR2022] Thin-Plate Spline Motion Model for Image Animation Source code of the CVPR'2022 paper "Thin-Plate Spline Motion Model for Image Animation"

yoyo-nb 1.4k Dec 30, 2022
PyTorch CZSL framework containing GQA, the open-world setting, and the CGE and CompCos methods.

Compositional Zero-Shot Learning This is the official PyTorch code of the CVPR 2021 works Learning Graph Embeddings for Compositional Zero-shot Learni

EML Tübingen 70 Dec 27, 2022
Official Implementation for HyperStyle: StyleGAN Inversion with HyperNetworks for Real Image Editing

HyperStyle: StyleGAN Inversion with HyperNetworks for Real Image Editing Yuval Alaluf*, Omer Tov*, Ron Mokady, Rinon Gal, Amit H. Bermano *Denotes equ

885 Jan 06, 2023
Code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizability of Cross-Task Neural Architecture Search.

TransNAS-Bench-101 This repository contains the publishable code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizabili

Yawen Duan 17 Nov 20, 2022
Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic video-to-video translation.

vid2vid Project | YouTube(short) | YouTube(full) | arXiv | Paper(full) Pytorch implementation for high-resolution (e.g., 2048x1024) photorealistic vid

NVIDIA Corporation 8.1k Jan 01, 2023
[ICCV 2021] Deep Hough Voting for Robust Global Registration

Deep Hough Voting for Robust Global Registration, ICCV, 2021 Project Page | Paper | Video Deep Hough Voting for Robust Global Registration Junha Lee1,

Junha Lee 10 Dec 02, 2022
Analysing poker data from home games with friends

Poker Game Analysis Analysing poker data from home games with friends. Not a lot of data is collected, so this project is primarily focussed on descri

Stavros Karmaniolos 1 Oct 15, 2022
Unified tracking framework with a single appearance model

Paper: Do different tracking tasks require different appearance model? [ArXiv] (comming soon) [Project Page] (comming soon) UniTrack is a simple and U

ZhongdaoWang 300 Dec 24, 2022
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

Super Resolution Examples We run this script under TensorFlow 2.0 and the TensorLayer2.0+. For TensorLayer 1.4 version, please check release. 🚀 🚀 🚀

TensorLayer Community 2.9k Jan 08, 2023
Deep Q-learning for playing chrome dino game

[PYTORCH] Deep Q-learning for playing Chrome Dino

Viet Nguyen 68 Dec 05, 2022
Python interface for the DIGIT tactile sensor

DIGIT-INTERFACE Python interface for the DIGIT tactile sensor. For updates and discussions please join the #DIGIT channel at the www.touch-sensing.org

Facebook Research 35 Dec 22, 2022
Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model

Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model Baris Gecer 1, Binod Bhattarai 1

Baris Gecer 190 Dec 29, 2022
GuideDog is an AI/ML-based mobile app designed to assist the lives of the visually impaired, 100% voice-controlled

Guidedog Authors: Kyuhee Jo, Steven Gunarso, Jacky Wang, Raghav Sharma GuideDog is an AI/ML-based mobile app designed to assist the lives of the visua

Kyuhee Jo 5 Nov 24, 2021
Justmagic - Use a function as a method with this mystic script, like in Nim

justmagic Use a function as a method with this mystic script, like in Nim. Just

witer33 8 Oct 08, 2022
Artificial Intelligence search algorithm base on Pacman

Pacman Search Artificial Intelligence search algorithm base on Pacman Source The Pacman Projects by the University of California, Berkeley. Layouts Di

Day Fundora 6 Nov 17, 2022
Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression

Quantile Regression DQN Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression (https://arx

Arsenii Senya Ashukha 80 Sep 17, 2022
Safe Local Motion Planning with Self-Supervised Freespace Forecasting, CVPR 2021

Safe Local Motion Planning with Self-Supervised Freespace Forecasting By Peiyun Hu, Aaron Huang, John Dolan, David Held, and Deva Ramanan Citing us Yo

Peiyun Hu 90 Dec 01, 2022
An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" in Pytorch.

GLOM An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" for MNIST Dataset. To understand this

50 Oct 19, 2022