Implementation of Supervised Contrastive Learning with AMP, EMA, SWA, and many other tricks

Overview

SupCon-Framework

The repo is an implementation of Supervised Contrastive Learning. It's based on another implementation, but with several differencies:

  • Fixed bugs (incorrect ResNet implementations, which leads to a very small max batch size),
  • Offers a lot of additional functionality (first of all, rich validation).

To be more precise, in this implementations you will find:

  • Augmentations with albumentations
  • Hyperparameters are moved to .yml configs
  • t-SNE visualizations
  • 2-step validation (for features before and after the projection head) using metrics like AMI, NMI, mAP, precision_at_1, etc with PyTorch Metric Learning.
  • Exponential Moving Average for a more stable training, and Stochastic Moving Average for a better generalization and just overall performance.
  • Automatic Mixed Precision (torch version) training in order to be able to train with a bigger batch size (roughly by a factor of 2).
  • LabelSmoothing loss, and LRFinder for the second stage of the training (FC).
  • TensorBoard logs, checkpoints
  • Support of timm models, and pytorch-optimizer

Install

  1. Clone the repo:
git clone https://github.com/ivanpanshin/SupCon-Framework && cd SupCon-Framework/
  1. Create a clean virtual environment
python3 -m venv venv
source venv/bin/activate
  1. Install dependencies
python -m pip install --upgrade pip
pip install -r requirements.txt

Training

In order to execute Cifar10 training run:

python train.py --config_name configs/train/train_supcon_resnet18_cifar10_stage1.yml
python swa.py --config_name configs/train/swa_supcon_resnet18_cifar10_stage1.yml
python train.py --config_name configs/train/train_supcon_resnet18_cifar10_stage2.yml
python swa.py --config_name configs/train/swa_supcon_resnet18_cifar10_stage2.yml

In order to run LRFinder on the second stage of the training, run:

python learning_rate_finder.py --config_name configs/train/lr_finder_supcon_resnet18_cifar10_stage2.yml

The process of training Cifar100 is exactly the same, just change config names from cifar10 to cifar100.

After that you can check the results of the training either in logs or runs directory. For example, in order to check tensorboard logs for the first stage of Cifar10 training, run:

tensorboard --logdir runs/supcon_first_stage_cifar10

Visualizations

This repo is supplied with t-SNE visualizations so that you can check embeddings you get after the training. Check t-SNE.ipynb for details.

Those are t-SNE visualizations for Cifar10 for validation and train with SupCon (top), and validation and train with CE (bottom).

Those are t-SNE visualizations for Cifar100 for validation and train with SupCon (top), and validation and train with CE (bottom).

Results

Model Stage Dataset Accuracy
ResNet18 Frist CIFAR10 95.9
ResNet18 Second CIFAR10 94.9
ResNet18 Frist CIFAR100 79.0
ResNet18 Second CIFAR100 77.9

Note that even though the accuracy on the second stage is lower, it's not always the case. In my experience, the difference between stages is usually around 1 percent, including the difference that favors the second stage.

Training time for the whole pipeline (without any early stopping) on CIFAR10 or CIFAR100 is around 4 hours (single 2080Ti with AMP). However, with reasonable early stopping that value goes down to around 2.5-3 hours.

Custom datasets

It's fairly easy to adapt this pipeline to custom datasets. First, you need to check tools/datasets.py for that. Second, add a new class for your dataset. The only guideline here is to follow the same augmentation logic, that is

        if self.second_stage:
            image = self.transform(image=image)['image']
        else:
            image = self.transform(image)

Third, add your dataset to DATASETS dict still inside tools/datasets.py, and you're good to go.

FAQ

  • Q: What hyperparameters I should try to change?

    A: First of all, learning rate. Second of all, try to change the augmentation policy. SupCon is build around "cropping + color jittering" scheme, so you can try changing the cropping size or the intensity of jittering. Check tools.utils.build_transforms for that.

  • Q: What backbone and batch size should I use?

    A: This is quite simple. Take the biggest backbone you can, and after that take the highest batch size your GPU can offer. The reason for that: SupCon is more prone (than regular classification training with CE/LabelSmoothing/etc) to improving with stronger backbones. Moverover, it has a property of explicit hard positive and negative mining. It means that the higher the batch size - the more difficult and helpful samples you supply to your model.

  • Q: Do I need the second stage of the training?

    A: Not necessarily. You can do classification based only on embeddings. In order to do that compute embeddings for the train set, and at inference time do the following: take a sample, compute its embedding, take the closest one from the training, take its class. To make this fast and efficient, you something like faiss for similarity search. Note that this is actually how validation is done in this repo. Moveover, during training you will see a metric precision_at_1. This is actually just accuracy based solely on embeddings.

  • Q: Should I use AMP?

    A: If your GPU has tensor cores (like 2080Ti) - yes. If it doesn't (like 1080Ti) - check the speed with AMP and without. If the speed dropped slightly (or even increased by a bit) - use it, since SupCon works better with bigger batch sizes.

  • Q: How should I use EMA?

    A: You only need to choose the ema_decay_per_epoch parameter in the config. The heuristic is fairly simple. If your dataset is big, then something as small as 0.3 will do just fine. And as your dataset gets smaller, you can increase ema_decay_per_epoch. Thanks to bonlime for this idea. I advice you to check his great pytorch tools repo, it's a hidden gem.

  • Q: Is it better than training with Cross Entropy/Label Smoothing/etc?

    A: Unfortunately, in my experience, it's much easier to get better results with something like CE. It's more stable, faster to train, and simply produces better or the same results. For instance, in case on CIFAR10/100 it's trivial to train ResNet18 up tp 96/81 percent respectively. Of cource, I've seen cased where SupCon performs better, but it takes quite a bit of work to make it outperform CE.

  • Q: How long should I train with SupCon?

    A: The answer is tricky. On one hand, authors of the original paper claim that the longer you train with SupCon, the better it gets. However, I did not observe such a behavior in my tests. So the only recommendation I can give is the following: start with 100 epochs for easy datasets (like CIFAR10/100), and 1000 for more industrial ones. Then - monitor the training process. If the validaton metric (such as precision_at_1) doesn't impove for several dozens of epochs - you can stop the training. You might incorporate early stopping for this reason into the pipeline.

Owner
Ivan Panshin
Machine Learning Engineer: CV, NLP, tabular data. Kaggle (top 0.003% worldwide) and Open Source
Ivan Panshin
Basic auth for Django.

easy-basicauth WARNING! THIS LIBRARY IS IN PROGRESS! ANYTHING CAN CHANGE AT ANY MOMENT WITHOUT ANY NOTICE! Installation pip install easy-basicauth Usa

bichanna 2 Mar 25, 2022
Easy and secure implementation of Azure AD for your FastAPI APIs 🔒 Single- and multi-tenant support.

Easy and secure implementation of Azure AD for your FastAPI APIs 🔒 Single- and multi-tenant support.

Intility 220 Jan 05, 2023
Spotify User Token Generator Template

Spotify User Token Generator Template Quick Start $ pip3 install -r requirements

Arda Soyer 1 Feb 01, 2022
Crie seus tokens de autenticação com o AScrypt.

AScrypt tokens O AScrypt é uma forma de gerar tokens de autenticação para sua aplicação de forma rápida e segura. Todos os tokens que foram, mesmo que

Jaedson Silva 0 Jun 24, 2022
REST implementation of Django authentication system.

djoser REST implementation of Django authentication system. djoser library provides a set of Django Rest Framework views to handle basic actions such

Sunscrapers 2.2k Jan 01, 2023
Django-react-firebase-auth - A web app showcasing OAuth2.0 + OpenID Connect using Firebase, Django-Rest-Framework and React

Demo app to show Django Rest Framework working with Firebase for authentication

Teshank Raut 6 Oct 13, 2022
it's a Django application to register and authenticate users using phone number.

django-phone-auth It's a Django application to register and authenticate users using phone number. CustomUser model created using AbstractUser class.

MsudD 4 Nov 29, 2022
Simple Login - Login Extension for Flask - maintainer @cuducos

Login Extension for Flask The simplest way to add login to flask! How it works First, install it from PyPI: $ pip install flask_simplelogin Then, use

Flask Extensions 181 Jan 01, 2023
A generic, spec-compliant, thorough implementation of the OAuth request-signing logic

OAuthLib - Python Framework for OAuth1 & OAuth2 *A generic, spec-compliant, thorough implementation of the OAuth request-signing logic for Python 3.5+

OAuthlib 2.5k Jan 01, 2023
User Authentication in Flask using Flask-Login

User-Authentication-in-Flask Set up & Installation. 1 .Clone/Fork the git repo and create an environment Windows git clone https://github.com/Dev-Elie

ONDIEK ELIJAH OCHIENG 31 Dec 11, 2022
A JSON Web Token authentication plugin for the Django REST Framework.

Simple JWT Abstract Simple JWT is a JSON Web Token authentication plugin for the Django REST Framework. For full documentation, visit django-rest-fram

Jazzband 3.2k Dec 28, 2022
Django Rest Framework App wih JWT Authentication and other DRF stuff

Django Queries App with JWT authentication, Class Based Views, Serializers, Swagger UI, CI/CD and other cool DRF stuff API Documentaion /swagger - Swa

Rafael Salimov 4 Jan 29, 2022
A JSON Web Token authentication plugin for the Django REST Framework.

Simple JWT Abstract Simple JWT is a JSON Web Token authentication plugin for the Django REST Framework. For full documentation, visit django-rest-fram

Simple JWT 3.3k Jan 01, 2023
Social auth made simple

Python Social Auth Python Social Auth is an easy-to-setup social authentication/registration mechanism with support for several frameworks and auth pr

Matías Aguirre 2.8k Dec 24, 2022
Imia is an authentication library for Starlette and FastAPI (python 3.8+).

Imia Imia (belarussian for "a name") is an authentication library for Starlette and FastAPI (python 3.8+). Production status The library is considered

Alex Oleshkevich 91 Nov 24, 2022
A host-guest based app in which host can CREATE the room. and guest can join room with room code and vote for song to skip. User is authenticated using Spotify API

A host-guest based app in which host can CREATE the room. and guest can join room with room code and vote for song to skip. User is authenticated using Spotify API

Aman Raj 5 May 10, 2022
PetitPotam - Coerce NTLM authentication from Windows hosts

Python implementation for PetitPotam

ollypwn 137 Dec 28, 2022
AddressBookApp - Address Book App in Django

AddressBookApp Application Name Address Book App in Django, 2022 Technologies La

Joshua K 1 Aug 18, 2022
CheckList-Api - Created with django rest framework and JWT(Json Web Tokens for Authentication)

CheckList Api created with django rest framework and JWT(Json Web Tokens for Aut

shantanu nimkar 1 Jan 24, 2022
A fully tested, abstract interface to creating OAuth clients and servers.

Note: This library implements OAuth 1.0 and not OAuth 2.0. Overview python-oauth2 is a python oauth library fully compatible with python versions: 2.6

Joe Stump 3k Jan 02, 2023