Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Related tags

Deep LearningUID-FDK
Overview

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page

This repository provides the official PyTorch implementation of the following paper:

Unsupervised Image Denoising with Frequency Domain Knowledge

Nahyun Kim* (KAIST), Donggon Jang* (KAIST), Sunhyeok Lee (KAIST), Bomi Kim (KAIST), and Dae-Shik Kim (KAIST) (*The authors have equally contributed.)

BMVC 2021, Accepted as Oral Paper.

Abstract: Supervised learning-based methods yield robust denoising results, yet they are inherently limited by the need for large-scale clean/noisy paired datasets. The use of unsupervised denoisers, on the other hand, necessitates a more detailed understanding of the underlying image statistics. In particular, it is well known that apparent differences between clean and noisy images are most prominent on high-frequency bands, justifying the use of low-pass filters as part of conventional image preprocessing steps. However, most learning-based denoising methods utilize only one-sided information from the spatial domain without considering frequency domain information. To address this limitation, in this study we propose a frequency-sensitive unsupervised denoising method. To this end, a generative adversarial network (GAN) is used as a base structure. Subsequently, we include spectral discriminator and frequency reconstruction loss to transfer frequency knowledge into the generator. Results using natural and synthetic datasets indicate that our unsupervised learning method augmented with frequency information achieves state-of-the-art denoising performance, suggesting that frequency domain information could be a viable factor in improving the overall performance of unsupervised learning-based methods.

Requirements

To install requirements:

conda env create -n [your env name] -f environment.yaml
conda activate [your env name]

To train the model

Synthetic Noise (AWGN)

  1. Download DIV2K dataset for training in here
  2. Randomly split the DIV2K dataset into Clean/Noisy set. Please refer the .txt files in split_data.
  3. Place the splitted dataset(DIV2K_C and DIV2K_N) in ./dataset directory.
dataset
└─── DIV2K_C
└─── DIV2K_N
└─── test
  1. Use gen_dataset_synthetic.py to package dataset in the h5py format.
  2. After that, run this command:
sh ./scripts/train_awgn_sigma15.sh # AWGN with a noise level = 15
sh ./scripts/train_awgn_sigma25.sh # AWGN with a noise level = 25
sh ./scripts/train_awgn_sigma50.sh # AWGN with a noise level = 50
  1. After finishing the training, .pth file is stored in ./exp/[exp_name]/[seed_number]/saved_models/ directory.

Real-World Noise

  1. Download SIDD-Medium Dataset for training in here
  2. Radnomly split the SIDD-Medium Dataset into Clean/Noisy set. Please refer the .txt files in split_data.
  3. Place the splitted dataset(SIDD_C and SIDD_N) in ./dataset directory.
dataset
└─── SIDD_C
└─── SIDD_N
└─── test
  1. Use gen_dataset_real.py to package dataset in the h5py format.
  2. After that, run this command:
sh ./scripts/train_real.sh
  1. After finishing the training, .pth file is stored in ./exp/[exp_name]/[seed_number]/saved_models/ directory.

To evaluate the model

Synthetic Noise (AWGN)

  1. Download CBSD68 dataset for evaluation in here
  2. Place the dataset in ./dataset/test directory.
dataset
└─── train
└─── test
     └─── CBSD68
     └─── SIDD_test
  1. After that, run this command:
sh ./scripts/test_awgn_sigma15.sh # AWGN with a noise level = 15
sh ./scripts/test_awgn_sigma25.sh # AWGN with a noise level = 25
sh ./scripts/test_awgn_sigma50.sh # AWGN with a noise level = 50

Real-World Noise

  1. Download the SIDD test dataset for evaluation in here
  2. Place the dataset in ./dataset/test directory.
dataset
└─── train
└─── test
     └─── CBSD68
     └─── SIDD_test
  1. After that, run this command:
sh ./scripts/test_real.sh

Pre-trained model

We provide pre-trained models in ./checkpoints directory.

checkpoints
|   AWGN_sigma15.pth # pre-trained model (AWGN with a noise level = 15)
|   AWGN_sigma25.pth # pre-trained model (AWGN with a noise level = 25)
|   AWGN_sigma50.pth # pre-trained model (AWGN with a noise level = 50)
|   SIDD.pth # pre-trained model (Real-World noise)

Acknowledgements

This code is built on U-GAT-IT,CARN, SSD-GAN. We thank the authors for sharing their codes.

Contact

If you have any questions, feel free to contact me ([email protected])

Owner
Donggon Jang
Donggon Jang
(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

xxxnell 656 Dec 30, 2022
Official code for UnICORNN (ICML 2021)

UnICORNN (Undamped Independent Controlled Oscillatory RNN) [ICML 2021] This repository contains the implementation to reproduce the numerical experime

Konstantin Rusch 21 Dec 22, 2022
A Deep Reinforcement Learning Framework for Stock Market Trading

DQN-Trading This is a framework based on deep reinforcement learning for stock market trading. This project is the implementation code for the two pap

61 Jan 01, 2023
Deep motion generator collections

GenMotion GenMotion (/gen’motion/) is a Python library for making skeletal animations. It enables easy dataset loading and experiment sharing for synt

23 May 24, 2022
RoFormer_pytorch

PyTorch RoFormer 原版Tensorflow权重(https://github.com/ZhuiyiTechnology/roformer) chinese_roformer_L-12_H-768_A-12.zip (提取码:xy9x) 已经转化为PyTorch权重 chinese_r

yujun 283 Dec 12, 2022
Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic

Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [Paper] [Colab is coming soon] Approach Example Usage To r

170 Jan 03, 2023
Who calls the shots? Rethinking Few-Shot Learning for Audio (WASPAA 2021)

rethink-audio-fsl This repo contains the source code for the paper "Who calls the shots? Rethinking Few-Shot Learning for Audio." (WASPAA 2021) Table

Yu Wang 34 Dec 24, 2022
GNN-based Recommendation Benchmark

GRecX A Fair Benchmark for GNN-based Recommendation Homepage and Documentation Homepage: Documentation: Paper: GRecX: An Efficient and Unified Benchma

73 Oct 17, 2022
clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation

README clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation CVPR 2021 Authors: Suprosanna Shit and Johannes C. Paetzo

110 Dec 29, 2022
A series of convenience functions to make basic image processing operations such as translation, rotation, resizing, skeletonization, and displaying Matplotlib images easier with OpenCV and Python.

imutils A series of convenience functions to make basic image processing functions such as translation, rotation, resizing, skeletonization, and displ

Adrian Rosebrock 4.3k Jan 08, 2023
Exploration of some patients clinical variables.

Answer_ALS_clinical_data Exploration of some patients clinical variables. All the clinical / metadata data is available here: https://data.answerals.o

1 Jan 20, 2022
Python scripts form performing stereo depth estimation using the HITNET model in ONNX.

ONNX-HITNET-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in ONNX. Stereo depth estimation on

Ibai Gorordo 30 Nov 08, 2022
A cross-document event and entity coreference resolution system, trained and evaluated on the ECB+ corpus.

A Comprehensive Comparison of Word Embeddings in Event & Entity Coreference Resolution. Introduction This repo contains experimental code derived from

2 May 09, 2022
Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods."

pv_predict_unet-lstm Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods." IEEE Transactions

FolkScientistInDL 8 Oct 08, 2022
Official PaddlePaddle implementation of Paint Transformer

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Paddle Implementation] Update We have optimized the serial inference p

TianweiLin 284 Dec 31, 2022
Code for classifying international patents based on the text of their titles/abstracts

Patent Classification Goal: To train a machine learning classifier that can automatically classify international patents downloaded from the WIPO webs

Prashanth Rao 1 Nov 08, 2022
Distilled coarse part of LoFTR adapted for compatibility with TensorRT and embedded divices

Coarse LoFTR TRT Google Colab demo notebook This project provides a deep learning model for the Local Feature Matching for two images that can be used

Kirill 46 Dec 24, 2022
Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation.

DuoRec Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation. Usage Download datasets fr

Qrh 46 Dec 19, 2022
Trajectory Prediction with Graph-based Dual-scale Context Fusion

DSP: Trajectory Prediction with Graph-based Dual-scale Context Fusion Introduction This is the project page of the paper Lu Zhang, Peiliang Li, Jing C

HKUST Aerial Robotics Group 103 Jan 04, 2023
An Implementation of SiameseRPN with Feature Pyramid Networks

SiameseRPN with FPN This project is mainly based on HelloRicky123/Siamese-RPN. What I've done is just add a Feature Pyramid Network method to the orig

3 Apr 16, 2022