Implementing SimCSE(paper, official repository) using TensorFlow 2 and KR-BERT.

Overview

KR-BERT-SimCSE

Implementing SimCSE(paper, official repository) using TensorFlow 2 and KR-BERT.

Training

Unsupervised

python train_unsupervised.py --mixed_precision

I used Korean Wikipedia Corpus that is divided into sentences in advance. (Check out tfds-korean catalog page for details)

  • Settings
    • KR-BERT character
    • peak learning rate 3e-5
    • batch size 64
    • Total steps: 25,000
    • 0.05 warmup rate, and linear decay learning rate scheduler
    • temperature 0.05
    • evalaute on KLUE STS and KorSTS every 250 steps
    • max sequence length 64
    • Use pooled outputs for training, and [CLS] token's representations for inference

The hyperparameters were not tuned and mostly followed the values in the paper.

Supervised

python train_supervised.py --mixed_precision

I used KorNLI for supervised training. (Check out tfds-korean catalog page)

  • Settings
    • KR-BERT character
    • batch size 128
    • epoch 3
    • peak learning rate 5e-5
    • 0.05 warmup rate, and linear decay learning rate scheduler
    • temperature 0.05
    • evalaute on KLUE STS and KorSTS every 125 steps
    • max sequence length 48
    • Use pooled outputs for training, and [CLS] token's representations for inference

The hyperparameters were not tuned and mostly followed the values in the paper.

Results

KorSTS (dev set results)

model 100 X Spearman correlation
KR-BERT base
SimCSE
unsupervised bi encoding 79.99
KR-BERT base
SimCSE-supervised
trained on KorNLI bi encoding 84.88
SRoBERTa base* unsupervised bi encoding 63.34
SRoBERTa base* trained on KorNLI bi encoding 76.48
SRoBERTa base* trained on KorSTS bi encoding 83.68
SRoBERTa base* trained on KorNLI -> KorSTS bi encoding 83.54
SRoBERTa large* trained on KorNLI bi encoding 77.95
SRoBERTa large* trained on KorSTS bi encoding 84.74
SRoBERTa large* trained on KorNLI -> KorSTS bi encoding 84.21

KorSTS (test set results)

model 100 X Spearman correlation
KR-BERT base
SimCSE
unsupervised bi encoding 73.25
KR-BERT base
SimCSE-supervised
trained on KorNLI bi encoding 80.72
SRoBERTa base* unsupervised bi encoding 48.96
SRoBERTa base* trained on KorNLI bi encoding 74.19
SRoBERTa base* trained on KorSTS bi encoding 78.94
SRoBERTa base* trained on KorNLI -> KorSTS bi encoding 80.29
SRoBERTa large* trained on KorNLI bi encoding 75.46
SRoBERTa large* trained on KorSTS bi encoding 79.55
SRoBERTa large* trained on KorNLI -> KorSTS bi encoding 80.49
SRoBERTa base* trained on KorSTS cross encoding 83.00
SRoBERTa large* trained on KorSTS cross encoding 85.27

KLUE STS (dev set results)

model 100 X Pearson's correlation
KR-BERT base
SimCSE
unsupervised bi encoding 74.45
KR-BERT base
SimCSE-supervised
trained on KorNLI bi encoding 79.42
KR-BERT base* supervised cross encoding 87.50

References

@misc{gao2021simcse,
    title={SimCSE: Simple Contrastive Learning of Sentence Embeddings},
    author={Tianyu Gao and Xingcheng Yao and Danqi Chen},
    year={2021},
    eprint={2104.08821},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
@misc{ham2020kornli,
    title={KorNLI and KorSTS: New Benchmark Datasets for Korean Natural Language Understanding},
    author={Jiyeon Ham and Yo Joong Choe and Kyubyong Park and Ilji Choi and Hyungjoon Soh},
    year={2020},
    eprint={2004.03289},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
@misc{park2021klue,
    title={KLUE: Korean Language Understanding Evaluation},
    author={Sungjoon Park and Jihyung Moon and Sungdong Kim and Won Ik Cho and Jiyoon Han and Jangwon Park and Chisung Song and Junseong Kim and Yongsook Song and Taehwan Oh and Joohong Lee and Juhyun Oh and Sungwon Lyu and Younghoon Jeong and Inkwon Lee and Sangwoo Seo and Dongjun Lee and Hyunwoo Kim and Myeonghwa Lee and Seongbo Jang and Seungwon Do and Sunkyoung Kim and Kyungtae Lim and Jongwon Lee and Kyumin Park and Jamin Shin and Seonghyun Kim and Lucy Park and Alice Oh and Jung-Woo Ha and Kyunghyun Cho},
    year={2021},
    eprint={2105.09680},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Owner
Jeong Ukjae
Jeong Ukjae
My implementation of Safaricom Machine Learning Codility test. The code has bugs, logical I guess I made errors and any correction will be appreciated.

Safaricom_Codility Machine Learning 2022 The test entails two questions. Question 1 was on Machine Learning. Question 2 was on SQL I ran out of time.

Lawrence M. 1 Mar 03, 2022
숭실대학교 컴퓨터학부 전공종합설계프로젝트

✨ 시각장애인을 위한 버스도착 알림 장치 ✨ 👀 개요 현대 사회에서 대중교통 위치 정보를 이용하여 사람들이 간단하게 이용할 대중교통의 정보를 얻고 쉽게 대중교통을 이용할 수 있다. 해당 정보는 각종 어플리케이션과 대중교통 이용시설에서 위치 정보를 제공하고 있지만 시각

taegyun 3 Jan 25, 2022
Idea is to build a model which will take keywords as inputs and generate sentences as outputs.

keytotext Idea is to build a model which will take keywords as inputs and generate sentences as outputs. Potential use case can include: Marketing Sea

Gagan Bhatia 364 Jan 03, 2023
Implementation of Natural Language Code Search in the project CodeBERT: A Pre-Trained Model for Programming and Natural Languages.

CodeBERT-Implementation In this repo we have replicated the paper CodeBERT: A Pre-Trained Model for Programming and Natural Languages. We are interest

Tanuj Sur 4 Jul 01, 2022
Text to speech for Vietnamese, ez to use, ez to update

Chào mọi người, đây là dự án mở nhằm giúp việc đọc được trở nên dễ dàng hơn. Rất cảm ơn đội ngũ Zalo đã cung cấp hạ tầng để mình có thể tạo ra app này

Trần Cao Minh Bách 32 Jul 29, 2022
Repo for Enhanced Seq2Seq Autoencoder via Contrastive Learning for Abstractive Text Summarization

ESACL: Enhanced Seq2Seq Autoencoder via Contrastive Learning for AbstractiveText Summarization This repo is for our paper "Enhanced Seq2Seq Autoencode

Rachel Zheng 14 Nov 01, 2022
Torchrecipes provides a set of reproduci-able, re-usable, ready-to-run RECIPES for training different types of models, across multiple domains, on PyTorch Lightning.

Recipes are a standard, well supported set of blueprints for machine learning engineers to rapidly train models using the latest research techniques without significant engineering overhead.Specifica

Meta Research 193 Dec 28, 2022
📝An easy-to-use package to restore punctuation of the text.

✏️ rpunct - Restore Punctuation This repo contains code for Punctuation restoration. This package is intended for direct use as a punctuation restorat

Daulet Nurmanbetov 72 Dec 30, 2022
A Chinese to English Neural Model Translation Project

ZH-EN NMT Chinese to English Neural Machine Translation This project is inspired by Stanford's CS224N NMT Project Dataset used in this project: News C

Zhenbang Feng 29 Nov 26, 2022
HAIS_2GNN: 3D Visual Grounding with Graph and Attention

HAIS_2GNN: 3D Visual Grounding with Graph and Attention This repository is for the HAIS_2GNN research project. Tao Gu, Yue Chen Introduction The motiv

Yue Chen 1 Nov 26, 2022
Reformer, the efficient Transformer, in Pytorch

Reformer, the Efficient Transformer, in Pytorch This is a Pytorch implementation of Reformer https://openreview.net/pdf?id=rkgNKkHtvB It includes LSH

Phil Wang 1.8k Dec 30, 2022
Levenshtein and Hamming distance computation

distance - Utilities for comparing sequences This package provides helpers for computing similarities between arbitrary sequences. Included metrics ar

112 Dec 22, 2022
ChatBotProyect - This is an unfinished project about a simple chatbot.

chatBotProyect This is an unfinished project about a simple chatbot. (union_todo.ipynb) Reminders for the project: Find why one of the vectorizers fai

Tomás 0 Jul 24, 2022
State-of-the-art NLP through transformer models in a modular design and consistent APIs.

Trapper (Transformers wRAPPER) Trapper is an NLP library that aims to make it easier to train transformer based models on downstream tasks. It wraps h

Open Business Software Solutions 42 Sep 21, 2022
Multiple implementations for abstractive text summurization , using google colab

Text Summarization models if you are able to endorse me on Arxiv, i would be more than glad https://arxiv.org/auth/endorse?x=FRBB89 thanks This repo i

463 Dec 26, 2022
BERTAC (BERT-style transformer-based language model with Adversarially pretrained Convolutional neural network)

BERTAC (BERT-style transformer-based language model with Adversarially pretrained Convolutional neural network) BERTAC is a framework that combines a

6 Jan 24, 2022
An example project using OpenPrompt under pytorch-lightning for prompt-based SST2 sentiment analysis model

pl_prompt_sst An example project using OpenPrompt under the framework of pytorch-lightning for a training prompt-based text classification model on SS

Zhiling Zhang 5 Oct 21, 2022
Nested Named Entity Recognition

Nested Named Entity Recognition Training Dataset: CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark url: https://tianchi.aliyun.

8 Dec 25, 2022
[AAAI 21] Curriculum Labeling: Revisiting Pseudo-Labeling for Semi-Supervised Learning

◥ Curriculum Labeling ◣ Revisiting Pseudo-Labeling for Semi-Supervised Learning Paola Cascante-Bonilla, Fuwen Tan, Yanjun Qi, Vicente Ordonez. In the

UVA Computer Vision 113 Dec 15, 2022
Codename generator using WordNet parts of speech database

codenames Codename generator using WordNet parts of speech database References: https://possiblywrong.wordpress.com/2021/09/13/code-name-generator/ ht

possiblywrong 27 Oct 30, 2022