ZeroGen: Efficient Zero-shot Learning via Dataset Generation

Overview

ZEROGEN

This repository contains the code for our paper “ZeroGen: Efficient Zero-shot Learning via Dataset Generation”. Our implementation is built on the source code from dino. Thanks for their work.

If you use this code, please cite our paper:

@article{ye2022zerogen,
      title={ZeroGen: Efficient Zero-shot Learning via Dataset Generation}, 
      author={Jiacheng Ye and Jiahui Gao and Qintong Li and Hang Xu and Jiangtao Feng and Zhiyong Wu and Tao Yu and Lingpeng Kong},
      year={2022},
      eprint={2202.07922},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

Setup

All requirements for ZEROGEN can be found in requirements.txt. You can install all required packages in a new environment with pip install -r requirements.txt.

Usage

The scripts/run_cls.sh and scripts/run_qa.sh scripts contain the running commands for the following settings:

  • supervised learning with human annotations (SUPERVISED)
  • prompt-based zero-shot learning (PROMPTING)
  • efficient zero-shot learning via dataset generation (ZEROGEN)

For text classification (TC) tasks (e.g., SST-2 and IMDb) and natural language inference (NLI) tasks (e.g., QNLI and RTE), run with bash scripts/run_cls.sh. For question answering (QA) tasks, run with bash scripts/run_qa.sh

When generating X (i.e., denotes text in TC, hypothesis in NLI and question in QA) in the final stage of the scripts, we also train the small model and evaluate it on human annotations. Specifically, after generating log_every number of examples, we perform training on the synthetic dataset and evaluation on the gold validation set. This gives as a trend graph similar to Figure 2 in the paper, which is shown by wandb, a powerful toolkit to track experiments.

Before running, you need to reset the following parameters to yours:

  • home_dir: path to ZeroGen
  • gpu: gpu id
  • batch_size: the batch size for generating with PLM. For SST-2, it costs ~16G when using a batch size of 32 with gpt2-xl. While for SQuAD, it costs ~60G using the same batch size and PLM because of the longer contexts. So decrease the batch size if needed.
  • WANDB_PROJECT: project name, by default ZeroGen
  • WANDB_ENTITY: your wandb username
  • WANDB_API_KEY: your api-key

By default we use GPT2-XL as pre-trained language model (PLM) and DistilBERT as tiny-task model (TAM), to modify the size of PLM and TAM, you can change model_name and small_model_name in run_xxx.sh scripts.

Run with a synthesized dataset

After dataset generation, we save the synthetic dataset at:

  • For TC and NLI: out-${task_name}-x2/${dataset}/${task_name}-dataset.jsonl (e.g., out-sst-2-x2/gpt2-xl_topk0_topp0.9_sst-2-x2/sst-2-dataset.jsonl). The file is in json line format (e.g., {"C": "The Book of Mormon Musical", "X": "The Book of Mormon Musical brings all the drama and excitement of a real revival of the Broadway production to the big screen.", "Y": 0}).
  • For QA: out-${task_name}-x2/${dataset}. We save the dataset in huggingface Dataset format.

To run DistilBERT given a generated dataset, you can use the scripts/run_distilbert.sh script.

To run a LSTM-based model given a generated dataset, you can use the scripts/run_cls_lstm.sh script. Before that, you have to download the datasets from google drive link, which contain the standard test files.

Diversity and Correctness of a synthesized dataset

Divesity

We use Self-BLEU to measure the diversity of a synthesized dataset. To calculate the Self-BLEU for a given dataset, you can see the example in scripts/run_self_bleu.sh script.

Correctness

To calculate the Correctness, you can take the following steps:

  1. Replace the following parameters in scripts/run_distilbert.sh script with:

    • small_model_name=roberta-large
    • dataset=: empty means using standard training set
    • limit=: empty means using full standard training set

    This will give you a RoBERTa-Large trained with full human annotations, which can be used as an evaluator.

  2. Replace the following parameters in scripts/run_distilbert.sh script with:

    • small_model_ckpt=tmp/checkpoint-xxx: the final RoBERTa-Large checkpoint saved in step 1.
    • limit=10000: the number of samples to use, by default 10000
    • dataset=xxx: the name of synthetic dataset (e.g., gpt2-xl_topk0_topp0.9_sst-2-x2)
    • no_train=true: disable training

    Run the script, and you will get Metric on standard dataset and Metric on synthetic dataset, which represents the Correctness of standard dataset and synthetic dataset, respectively.

Resources

We provide some synthetic datasets and standard datasets for training LSTM in this google drive link. When training DistilBERT, the standard dataset is directly downloaded by huggingface Dataset package. Note we use the same prompt for IMDb/SST-2, and SQuAD/AdversarialQA, therefore the synthetic datasets are also the same.

Like a cowsay but without cows!

Foxsay This is a simple program that generates pictures of a cute fox with a message. It is like a cowsay but without cows! Fox girls are better! Usag

Anastasia Kim 28 Feb 20, 2022
Code for T-Few from "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning"

T-Few This repository contains the official code for the paper: "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learni

220 Dec 31, 2022
Generative Flow Networks

Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation Implementation for our paper, submitted to NeurIPS 2021 (also chec

Emmanuel Bengio 381 Jan 04, 2023
DL course co-developed by YSDA, HSE and Skoltech

Deep learning course This repo supplements Deep Learning course taught at YSDA and HSE @fall'21. For previous iteration visit the spring21 branch. Lec

Yandex School of Data Analysis 1.3k Dec 30, 2022
A rule learning algorithm for the deduction of syndrome definitions from time series data.

README This project provides a rule learning algorithm for the deduction of syndrome definitions from time series data. Large parts of the algorithm a

0 Sep 24, 2021
Unofficial PyTorch implementation of Neural Additive Models (NAM) by Agarwal, et al.

nam-pytorch Unofficial PyTorch implementation of Neural Additive Models (NAM) by Agarwal, et al. [abs, pdf] Installation You can access nam-pytorch vi

Rishabh Anand 11 Mar 14, 2022
This repository contains the files for running the Patchify GUI.

Repository Name Train-Test-Validation-Dataset-Generation App Name Patchify Description This app is designed for crop images and creating smal

Salar Ghaffarian 9 Feb 15, 2022
The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks

The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks This folder contains the code to reproduce the data in "The Implicit Bias o

Samuel Lippl 0 Feb 05, 2022
GraphLily: A Graph Linear Algebra Overlay on HBM-Equipped FPGAs

GraphLily: A Graph Linear Algebra Overlay on HBM-Equipped FPGAs GraphLily is the first FPGA overlay for graph processing. GraphLily supports a rich se

Cornell Zhang Research Group 39 Dec 13, 2022
This repository contains implementations and illustrative code to accompany DeepMind publications

DeepMind Research This repository contains implementations and illustrative code to accompany DeepMind publications. Along with publishing papers to a

DeepMind 11.3k Dec 31, 2022
Unofficial PyTorch Implementation of "Augmenting Convolutional networks with attention-based aggregation"

Pytorch Implementation of Augmenting Convolutional networks with attention-based aggregation This is the unofficial PyTorch Implementation of "Augment

DK 20 Sep 09, 2022
这是一个yolo3-tf2的源码,可以用于训练自己的模型。

YOLOV3:You Only Look Once目标检测模型在Tensorflow2当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料

Bubbliiiing 68 Dec 21, 2022
Paper Title: Heterogeneous Knowledge Distillation for Simultaneous Infrared-Visible Image Fusion and Super-Resolution

HKDnet Paper Title: "Heterogeneous Knowledge Distillation for Simultaneous Infrared-Visible Image Fusion and Super-Resolution" Email:

wasteland 11 Nov 12, 2022
Uni-Fold: Training your own deep protein-folding models.

Uni-Fold: Training your own deep protein-folding models. This package provides and implementation of a trainable, Transformer-based deep protein foldi

DeepModeling 88 Jan 03, 2023
[ICML 2021] A fast algorithm for fitting robust decision trees.

GROOT: Growing Robust Trees Growing Robust Trees (GROOT) is an algorithm that fits binary classification decision trees such that they are robust agai

Cyber Analytics Lab 17 Nov 21, 2022
A Tensorflow implementation of BicycleGAN.

BicycleGAN implementation in Tensorflow As part of the implementation series of Joseph Lim's group at USC, our motivation is to accelerate (or sometim

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 97 Dec 02, 2022
HGCAE Pytorch implementation. CVPR2021 accepted.

Hyperbolic Graph Convolutional Auto-Encoders Accepted to CVPR2021 🎉 Official PyTorch code of Unsupervised Hyperbolic Representation Learning via Mess

Junho Cho 37 Nov 13, 2022
[ICCV2021] Official code for "Channel-wise Topology Refinement Graph Convolution for Skeleton-Based Action Recognition"

CTR-GCN This repo is the official implementation for Channel-wise Topology Refinement Graph Convolution for Skeleton-Based Action Recognition. The pap

Yuxin Chen 148 Dec 16, 2022
Scenarios, tutorials and demos for Autonomous Driving

The Autonomous Driving Cookbook (Preview) NOTE: This project is developed and being maintained by Project Road Runner at Microsoft Garage. This is cur

Microsoft 2.1k Jan 02, 2023
This is the implementation of our work Deep Extreme Cut (DEXTR), for object segmentation from extreme points.

This is the implementation of our work Deep Extreme Cut (DEXTR), for object segmentation from extreme points.

Sergi Caelles 828 Jan 05, 2023