Accurately separate the TLD from the registered domain and subdomains of a URL, using the Public Suffix List.

Overview

tldextract

Python Module PyPI version Build Status

tldextract accurately separates the gTLD or ccTLD (generic or country code top-level domain) from the registered domain and subdomains of a URL. For example, say you want just the 'google' part of 'http://www.google.com'.

Everybody gets this wrong. Splitting on the '.' and taking the last 2 elements goes a long way only if you're thinking of simple e.g. .com domains. Think parsing http://forums.bbc.co.uk for example: the naive splitting method above will give you 'co' as the domain and 'uk' as the TLD, instead of 'bbc' and 'co.uk' respectively.

tldextract on the other hand knows what all gTLDs and ccTLDs look like by looking up the currently living ones according to the Public Suffix List (PSL). So, given a URL, it knows its subdomain from its domain, and its domain from its country code.

>>> import tldextract

>>> tldextract.extract('http://forums.news.cnn.com/')
ExtractResult(subdomain='forums.news', domain='cnn', suffix='com')

>>> tldextract.extract('http://forums.bbc.co.uk/') # United Kingdom
ExtractResult(subdomain='forums', domain='bbc', suffix='co.uk')

>>> tldextract.extract('http://www.worldbank.org.kg/') # Kyrgyzstan
ExtractResult(subdomain='www', domain='worldbank', suffix='org.kg')

ExtractResult is a namedtuple, so it's simple to access the parts you want.

>>> ext = tldextract.extract('http://forums.bbc.co.uk')
>>> (ext.subdomain, ext.domain, ext.suffix)
('forums', 'bbc', 'co.uk')
>>> # rejoin subdomain and domain
>>> '.'.join(ext[:2])
'forums.bbc'
>>> # a common alias
>>> ext.registered_domain
'bbc.co.uk'

Note subdomain and suffix are optional. Not all URL-like inputs have a subdomain or a valid suffix.

>>> tldextract.extract('google.com')
ExtractResult(subdomain='', domain='google', suffix='com')

>>> tldextract.extract('google.notavalidsuffix')
ExtractResult(subdomain='google', domain='notavalidsuffix', suffix='')

>>> tldextract.extract('http://127.0.0.1:8080/deployed/')
ExtractResult(subdomain='', domain='127.0.0.1', suffix='')

If you want to rejoin the whole namedtuple, regardless of whether a subdomain or suffix were found:

>>> ext = tldextract.extract('http://127.0.0.1:8080/deployed/')
>>> # this has unwanted dots
>>> '.'.join(ext)
'.127.0.0.1.'
>>> # join each part only if it's truthy
>>> '.'.join(part for part in ext if part)
'127.0.0.1'

By default, this package supports the public ICANN TLDs and their exceptions. You can optionally support the Public Suffix List's private domains as well.

This module started by implementing the chosen answer from this StackOverflow question on getting the "domain name" from a URL. However, the proposed regex solution doesn't address many country codes like com.au, or the exceptions to country codes like the registered domain parliament.uk. The Public Suffix List does, and so does this module.

Installation

Latest release on PyPI:

pip install tldextract

Or the latest dev version:

pip install -e 'git://github.com/john-kurkowski/tldextract.git#egg=tldextract'

Command-line usage, splits the url components by space:

tldextract http://forums.bbc.co.uk
# forums bbc co.uk

Note About Caching

Beware when first running the module, it updates its TLD list with a live HTTP request. This updated TLD set is usually cached indefinitely in ``$HOME/.cache/python-tldextract`. To control the cache's location, set TLDEXTRACT_CACHE environment variable or set the cache_dir path in TLDExtract initialization.

(Arguably runtime bootstrapping like that shouldn't be the default behavior, like for production systems. But I want you to have the latest TLDs, especially when I haven't kept this code up to date.)

# extract callable that falls back to the included TLD snapshot, no live HTTP fetching
no_fetch_extract = tldextract.TLDExtract(suffix_list_urls=None)
no_fetch_extract('http://www.google.com')

# extract callable that reads/writes the updated TLD set to a different path
custom_cache_extract = tldextract.TLDExtract(cache_dir='/path/to/your/cache/')
custom_cache_extract('http://www.google.com')

# extract callable that doesn't use caching
no_cache_extract = tldextract.TLDExtract(cache_dir=False)
no_cache_extract('http://www.google.com')

If you want to stay fresh with the TLD definitions--though they don't change often--delete the cache file occasionally, or run

tldextract --update

or:

env TLDEXTRACT_CACHE="~/tldextract.cache" tldextract --update

It is also recommended to delete the file after upgrading this lib.

Advanced Usage

Public vs. Private Domains

The PSL maintains a concept of "private" domains.

PRIVATE domains are amendments submitted by the domain holder, as an expression of how they operate their domain security policy. … While some applications, such as browsers when considering cookie-setting, treat all entries the same, other applications may wish to treat ICANN domains and PRIVATE domains differently.

By default, tldextract treats public and private domains the same.

>>> extract = tldextract.TLDExtract()
>>> extract('waiterrant.blogspot.com')
ExtractResult(subdomain='waiterrant', domain='blogspot', suffix='com')

The following overrides this.

>>> extract = tldextract.TLDExtract()
>>> extract('waiterrant.blogspot.com', include_psl_private_domains=True)
ExtractResult(subdomain='', domain='waiterrant', suffix='blogspot.com')

or to change the default for all extract calls,

>>> extract = tldextract.TLDExtract( include_psl_private_domains=True)
>>> extract('waiterrant.blogspot.com')
ExtractResult(subdomain='', domain='waiterrant', suffix='blogspot.com')

The thinking behind the default is, it's the more common case when people mentally parse a URL. It doesn't assume familiarity with the PSL nor that the PSL makes such a distinction. Note this may run counter to the default parsing behavior of other, PSL-based libraries.

Specifying your own URL or file for the Suffix List data

You can specify your own input data in place of the default Mozilla Public Suffix List:

extract = tldextract.TLDExtract(
    suffix_list_urls=["http://foo.bar.baz"],
    # Recommended: Specify your own cache file, to minimize ambiguities about where
    # tldextract is getting its data, or cached data, from.
    cache_dir='/path/to/your/cache/',
    fallback_to_snapshot=False)

The above snippet will fetch from the URL you specified, upon first need to download the suffix list (i.e. if the cached version doesn't exist).

If you want to use input data from your local filesystem, just use the file:// protocol:

extract = tldextract.TLDExtract(
    suffix_list_urls=["file://absolute/path/to/your/local/suffix/list/file"],
    cache_dir='/path/to/your/cache/',
    fallback_to_snapshot=False)

Use an absolute path when specifying the suffix_list_urls keyword argument. os.path is your friend.

FAQ

Can you add suffix ____? Can you make an exception for domain ____?

This project doesn't contain an actual list of public suffixes. That comes from the Public Suffix List (PSL). Submit amendments there.

(In the meantime, you can tell tldextract about your exception by either forking the PSL and using your fork in the suffix_list_urls param, or adding your suffix piecemeal with the extra_suffixes param.)

If I pass an invalid URL, I still get a result, no error. What gives?

To keep tldextract light in LoC & overhead, and because there are plenty of URL validators out there, this library is very lenient with input. If valid URLs are important to you, validate them before calling tldextract.

This lenient stance lowers the learning curve of using the library, at the cost of desensitizing users to the nuances of URLs. Who knows how much. But in the future, I would consider an overhaul. For example, users could opt into validation, either receiving exceptions or error metadata on results.

Contribute

Setting up

  1. git clone this repository.
  2. Change into the new directory.
  3. pip install tox

Running the Test Suite

Run all tests against all supported Python versions:

tox --parallel

Run all tests against a specific Python environment configuration:

tox -l
tox -e py37
Owner
John Kurkowski
UX Engineering Consultant
John Kurkowski
A meta plugin for processing timelapse data timepoint by timepoint in napari

napari-time-slicer A meta plugin for processing timelapse data timepoint by timepoint. It enables a list of napari plugins to process 2D+t or 3D+t dat

Robert Haase 2 Oct 13, 2022
📊 Python Flask game that consolidates data from Nasdaq, allowing the user to practice buying and selling stocks.

Web Trader Web Trader is a trading website that consolidates data from Nasdaq, allowing the user to search up the ticker symbol and price of any stock

Paulina Khew 21 Aug 30, 2022
An orchestration platform for the development, production, and observation of data assets.

Dagster An orchestration platform for the development, production, and observation of data assets. Dagster lets you define jobs in terms of the data f

Dagster 6.2k Jan 08, 2023
A 2-dimensional physics engine written in Cairo

A 2-dimensional physics engine written in Cairo

Topology 38 Nov 16, 2022
A powerful data analysis package based on mathematical step functions. Strongly aligned with pandas.

The leading use-case for the staircase package is for the creation and analysis of step functions. Pretty exciting huh. But don't hit the close button

48 Dec 21, 2022
Produces a summary CSV report of an Amber Electric customer's energy consumption and cost data.

Amber Electric Usage Summary This is a command line tool that produces a summary CSV report of an Amber Electric customer's energy consumption and cos

Graham Lea 12 May 26, 2022
A fast, flexible, and performant feature selection package for python.

linselect A fast, flexible, and performant feature selection package for python. Package in a nutshell It's built on stepwise linear regression When p

88 Dec 06, 2022
Pipeline and Dataset helpers for complex algorithm evaluation.

tpcp - Tiny Pipelines for Complex Problems A generic way to build object-oriented datasets and algorithm pipelines and tools to evaluate them pip inst

Machine Learning and Data Analytics Lab FAU 3 Dec 07, 2022
A distributed block-based data storage and compute engine

Nebula is an extremely-fast end-to-end interactive big data analytics solution. Nebula is designed as a high-performance columnar data storage and tabular OLAP engine.

Columns AI 131 Dec 26, 2022
Senator Trades Monitor

Senator Trades Monitor This monitor will grab the most recent trades by senators and send them as a webhook to discord. Installation To use the monito

Yousaf Cheema 5 Jun 11, 2022
WAL enables programmable waveform analysis.

This repro introcudes the Waveform Analysis Language (WAL). The initial paper on WAL will appear at ASPDAC'22 and can be downloaded here: https://www.

Institute for Complex Systems (ICS), Johannes Kepler University Linz 40 Dec 13, 2022
A pipeline that creates consensus sequences from a Nanopore reads. I

A pipeline that creates consensus sequences from a Nanopore reads. It clusters reads that are similar to each other and creates a consensus that is then identified using BLAST.

Ada Madejska 2 May 15, 2022
Useful tool for inserting DataFrames into the Excel sheet.

PyCellFrame Insert Pandas DataFrames into the Excel sheet with a bunch of conditions Install pip install pycellframe Usage Examples Let's suppose that

Luka Sosiashvili 1 Feb 16, 2022
PrimaryBid - Transform application Lifecycle Data and Design and ETL pipeline architecture for ingesting data from multiple sources to redshift

Transform application Lifecycle Data and Design and ETL pipeline architecture for ingesting data from multiple sources to redshift This project is composed of two parts: Part1 and Part2

Emmanuel Boateng Sifah 1 Jan 19, 2022
cLoops2: full stack analysis tool for chromatin interactions

cLoops2: full stack analysis tool for chromatin interactions Introduction cLoops2 is an extension of our previous work, cLoops. From loop-calling base

YaqiangCao 25 Dec 14, 2022
Python for Data Analysis, 2nd Edition

Python for Data Analysis, 2nd Edition Materials and IPython notebooks for "Python for Data Analysis" by Wes McKinney, published by O'Reilly Media Buy

Wes McKinney 18.6k Jan 08, 2023
Automatic earthquake catalog building workflow: EQTransformer + Siamese EQTransformer + PickNet + REAL + HypoInverse

Automatic regional-scale earthquake catalog building workflow: EQTransformer + Siamese EQTransforme

Xiao Zhuowei 9 Nov 27, 2022
An experimental project I'm undertaking for the sole purpose of increasing my Python knowledge

5ePy is an experimental project I'm undertaking for the sole purpose of increasing my Python knowledge. #Goals Goal: Create a working, albeit lightwei

Hayden Covington 1 Nov 24, 2021
PyChemia, Python Framework for Materials Discovery and Design

PyChemia, Python Framework for Materials Discovery and Design PyChemia is an open-source Python Library for materials structural search. The purpose o

Materials Discovery Group 61 Oct 02, 2022
Functional tensors for probabilistic programming

Funsor Funsor is a tensor-like library for functions and distributions. See Functional tensors for probabilistic programming for a system description.

208 Dec 29, 2022