Traingenerator πŸ§™ A web app to generate template code for machine learning ✨

Overview

Traingenerator

πŸ§™   A web app to generate template code for machine learning ✨

Gitter Heroku Code style: black



πŸŽ‰ Traingenerator is now live! πŸŽ‰

Try it out:
https://traingenerator.jrieke.com


Generate custom template code for PyTorch & sklearn, using a simple web UI built with streamlit. Traingenerator offers multiple options for preprocessing, model setup, training, and visualization (using Tensorboard or comet.ml). It exports to .py, Jupyter Notebook, or Google Colab. The perfect tool to jumpstart your next machine learning project!


For updates, follow me on Twitter, and if you like this project, please consider sponsoring ☺




Adding new templates

You can add your own template in 4 easy steps (see below), without changing any code in the app itself. Your new template will be automatically discovered by Traingenerator and shown in the sidebar. That's it! 🎈

Want to share your magic? πŸ§™ PRs are welcome! Please have a look at CONTRIBUTING.md and write on Gitter.

Some ideas for new templates: Keras/Tensorflow, Pytorch Lightning, object detection, segmentation, text classification, ...

  1. Create a folder under ./templates. The folder name should be the task that your template solves (e.g. Image classification). Optionally, you can add a framework name (e.g. Image classification_PyTorch). Both names are automatically shown in the first two dropdowns in the sidebar (see image). ✨ Tip: Copy the example template to get started more quickly.
  2. Add a file sidebar.py to the folder (see example). It needs to contain a method show(), which displays all template-specific streamlit components in the sidebar (i.e. everything below Task) and returns a dictionary of user inputs.
  3. Add a file code-template.py.jinja to the folder (see example). This Jinja2 template is used to generate the code. You can write normal Python code in it and modify it (through Jinja) based on the user inputs in the sidebar (e.g. insert a parameter value from the sidebar or show different code parts based on the user's selection).
  4. Optional: Add a file test-inputs.yml to the folder (see example). This simple YAML file should define a few possible user inputs that can be used for testing. If you run pytest (see below), it will automatically pick up this file, render the code template with its values, and check that the generated code runs without errors. This file is optional – but it's required if you want to contribute your template to this repo.

Installation

Note: You only need to install Traingenerator if you want to contribute or run it locally. If you just want to use it, go here.

git clone https://github.com/jrieke/traingenerator.git
cd traingenerator
pip install -r requirements.txt

Optional: For the "Open in Colab" button to work you need to set up a Github repo where the notebook files can be stored (Colab can only open public files if they are on Github). After setting up the repo, create a file .env with content:

GITHUB_TOKEN=<your-github-access-token>
REPO_NAME=<user/notebooks-repo>

If you don't set this up, the app will still work but the "Open in Colab" button will only show an error message.

Running locally

streamlit run app/main.py

Make sure to run always from the traingenerator dir (not from the app dir), otherwise the app will not be able to find the templates.

Deploying to Heroku

First, install heroku and login. To create a new deployment, run inside traingenerator:

heroku create
git push heroku main
heroku open

To update the deployed app, commit your changes and run:

git push heroku main

Optional: If you set up a Github repo to enable the "Open in Colab" button (see above), you also need to run:

heroku config:set GITHUB_TOKEN=
   
    
heroku config:set REPO_NAME=
    

    
   

Testing

First, install pytest and required plugins via:

pip install -r requirements-dev.txt

To run all tests:

pytest ./tests

Note that this only tests the code templates (i.e. it renders them with different input values and makes sure that the code executes without error). The streamlit app itself is not tested at the moment.

You can also test an individual template by passing the name of the template dir to --template, e.g.:

pytest ./tests --template "Image classification_scikit-learn"

The mage image used in Traingenerator is from Twitter's Twemoji library and released under Creative Commons Attribution 4.0 International Public License.

Owner
Johannes Rieke
Product manager dev experience @streamlit
Johannes Rieke
A machine learning web application for binary classification using streamlit

Machine Learning web App This is a machine learning web application for binary classification using streamlit options this application contains 3 clas

abdelhak mokri 1 Dec 20, 2021
An open source framework that provides a simple, universal API for building distributed applications. Ray is packaged with RLlib, a scalable reinforcement learning library, and Tune, a scalable hyperparameter tuning library.

Ray provides a simple, universal API for building distributed applications. Ray is packaged with the following libraries for accelerating machine lear

23.3k Dec 31, 2022
Relevance Vector Machine implementation using the scikit-learn API.

scikit-rvm scikit-rvm is a Python module implementing the Relevance Vector Machine (RVM) machine learning technique using the scikit-learn API. Quicks

James Ritchie 204 Nov 18, 2022
Software Engineer Salary Prediction

Based on 2021 stack overflow data, this machine learning web application helps one predict the salary based on years of experience, level of education and the country they work in.

Jhanvi Mimani 1 Jan 08, 2022
ml4ir: Machine Learning for Information Retrieval

ml4ir: Machine Learning for Information Retrieval | changelog Quickstart β†’ ml4ir Read the Docs | ml4ir pypi | python ReadMe ml4ir is an open source li

Salesforce 77 Jan 06, 2023
A series of Jupyter notebooks that walk you through the fundamentals of Machine Learning and Deep Learning in Python using Scikit-Learn, Keras and TensorFlow 2.

Machine Learning Notebooks, 3rd edition This project aims at teaching you the fundamentals of Machine Learning in python. It contains the example code

AurΓ©lien Geron 1.6k Jan 05, 2023
This machine learning model was developed for House Prices

This machine learning model was developed for House Prices - Advanced Regression Techniques competition in Kaggle by using several machine learning models such as Random Forest, XGBoost and LightGBM.

serhat_derya 1 Mar 02, 2022
🌲 Implementation of the Robust Random Cut Forest algorithm for anomaly detection on streams

🌲 Implementation of the Robust Random Cut Forest algorithm for anomaly detection on streams

Real-time water systems lab 416 Jan 06, 2023
A linear regression model for house price prediction

Linear_Regression_Model A linear regression model for house price prediction. This code is using these packages, so please make sure your have install

ShawnWang 1 Nov 29, 2021
A data preprocessing and feature engineering script for a machine learning pipeline is prepared.

FEATURE ENGINEERING Business Problem: A data preprocessing and feature engineering script for a machine learning pipeline needs to be prepared. It is

Pinar Oner 7 Dec 18, 2021
Python module for machine learning time series:

seglearn Seglearn is a python package for machine learning time series or sequences. It provides an integrated pipeline for segmentation, feature extr

David Burns 536 Dec 29, 2022
PennyLane is a cross-platform Python library for differentiable programming of quantum computers

PennyLane is a cross-platform Python library for differentiable programming of quantum computers. Train a quantum computer the same way as a neural ne

PennyLaneAI 1.6k Jan 01, 2023
Optimal Randomized Canonical Correlation Analysis

ORCCA Optimal Randomized Canonical Correlation Analysis This project is for the python version of ORCCA algorithm. It depends on Numpy for matrix calc

Yinsong Wang 1 Nov 21, 2021
All-in-one web-based development environment for machine learning

All-in-one web-based development environment for machine learning Getting Started β€’ Features & Screenshots β€’ Support β€’ Report a Bug β€’ FAQ β€’ Known Issu

3 Feb 03, 2021
100 Days of Machine and Deep Learning Code

πŸ’― Days of Machine Learning and Deep Learning Code MACHINE LEARNING TOPICS COVERED - FROM SCRATCH Linear Regression Logistic Regression K Means Cluste

Tanishq Gautam 66 Nov 02, 2022
Python-based implementations of algorithms for learning on imbalanced data.

ND DIAL: Imbalanced Algorithms Minimalist Python-based implementations of algorithms for imbalanced learning. Includes deep and representational learn

DIAL | Notre Dame 220 Dec 13, 2022
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2021 Links Doc

Sebastian Raschka 4.2k Dec 29, 2022
A flexible CTF contest platform for coming PKU GeekGame events

Project Guiding Star: the Backend A flexible CTF contest platform for coming PKU GeekGame events Still in early development Highlights Not configurabl

PKU GeekGame 14 Dec 15, 2022
MegFlow - Efficient ML solutions for long-tailed demands.

Efficient ML solutions for long-tailed demands.

旷视倩元 MegEngine 371 Dec 21, 2022
Combines MLflow with a database (PostgreSQL) and a reverse proxy (NGINX) into a multi-container Docker application

Combines MLflow with a database (PostgreSQL) and a reverse proxy (NGINX) into a multi-container Docker application (with docker-compose).

Philip May 2 Dec 03, 2021