Official PyTorch Implementation of Hypercorrelation Squeeze for Few-Shot Segmentation, arXiv 2021

Related tags

Deep Learninghsnet
Overview

PWC PWC PWC PWC PWC PWC PWC PWC

Hypercorrelation Squeeze for Few-Shot Segmentation

This is the implementation of the paper "Hypercorrelation Squeeze for Few-Shot Segmentation" by Juhong Min, Dahyun Kang, and Minsu Cho. Implemented on Python 3.7 and Pytorch 1.5.1.

For more information, check out project [website] and the paper on [arXiv].

Requirements

  • Python 3.7
  • PyTorch 1.5.1
  • cuda 10.1
  • tensorboard 1.14

Conda environment settings:

conda create -n hsnet python=3.7
conda activate hsnet

conda install pytorch=1.5.1 torchvision cudatoolkit=10.1 -c pytorch
conda install -c conda-forge tensorflow
pip install tensorboardX

Preparing Few-Shot Segmentation Datasets

Download following datasets:

1. PASCAL-5i

Download PASCAL VOC2012 devkit (train/val data):

wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar

Download PASCAL VOC2012 SDS extended mask annotations from our [Google Drive].

2. COCO-20i

Download COCO2014 train/val images and annotations:

wget http://images.cocodataset.org/zips/train2014.zip
wget http://images.cocodataset.org/zips/val2014.zip
wget http://images.cocodataset.org/annotations/annotations_trainval2014.zip

Download COCO2014 train/val annotations from our Google Drive: [train2014.zip], [val2014.zip]. (and locate both train2014/ and val2014/ under annotations/ directory).

3. FSS-1000

Download FSS-1000 images and annotations from our [Google Drive].

Create a directory '../Datasets_HSN' for the above three few-shot segmentation datasets and appropriately place each dataset to have following directory structure:

../                         # parent directory
├── ./                      # current (project) directory
│   ├── common/             # (dir.) helper functions
│   ├── data/               # (dir.) dataloaders and splits for each FSSS dataset
│   ├── model/              # (dir.) implementation of Hypercorrelation Squeeze Network model 
│   ├── README.md           # intstruction for reproduction
│   ├── train.py            # code for training HSNet
│   └── test.py             # code for testing HSNet
└── Datasets_HSN/
    ├── VOC2012/            # PASCAL VOC2012 devkit
    │   ├── Annotations/
    │   ├── ImageSets/
    │   ├── ...
    │   └── SegmentationClassAug/
    ├── COCO2014/           
    │   ├── annotations/
    │   │   ├── train2014/  # (dir.) training masks (from Google Drive) 
    │   │   ├── val2014/    # (dir.) validation masks (from Google Drive)
    │   │   └── ..some json files..
    │   ├── train2014/
    │   └── val2014/
    └── FSS-1000/           # (dir.) contains 1000 object classes
        ├── abacus/   
        ├── ...
        └── zucchini/

Training

1. PASCAL-5i

python train.py --backbone {vgg16, resnet50, resnet101} 
                --fold {0, 1, 2, 3} 
                --benchmark pascal
                --lr 1e-3
                --bsz 20
                --load "path_to_trained_model/best_model.pt"
                --logpath "your_experiment_name"
  • Training takes approx. 2 days until convergence (trained with four 2080 Ti GPUs).

2. COCO-20i

python train.py --backbone {resnet50, resnet101} 
                --fold {0, 1, 2, 3} 
                --benchmark coco 
                --lr 1e-3
                --bsz 40
                --load "path_to_trained_model/best_model.pt"
                --logpath "your_experiment_name"
  • Training takes approx. 1 week until convergence (trained four Titan RTX GPUs).

3. FSS-1000

python train.py --backbone {vgg16, resnet50, resnet101} 
                --benchmark fss 
                --lr 1e-3
                --bsz 20
                --load "path_to_trained_model/best_model.pt"
                --logpath "your_experiment_name"
  • Training takes approx. 3 days until convergence (trained with four 2080 Ti GPUs).

Babysitting training:

Use tensorboard to babysit training progress:

  • For each experiment, a directory that logs training progress will be automatically generated under logs/ directory.
  • From terminal, run 'tensorboard --logdir logs/' to monitor the training progress.
  • Choose the best model when the validation (mIoU) curve starts to saturate.

Testing

1. PASCAL-5i

Pretrained models with tensorboard logs are available on our [Google Drive].

python test.py --backbone {vgg16, resnet50, resnet101} 
               --fold {0, 1, 2, 3} 
               --benchmark pascal
               --nshot {1, 5} 
               --load "path_to_trained_model/best_model.pt"

2. COCO-20i

Pretrained models with tensorboard logs are available on our [Google Drive].

python test.py --backbone {resnet50, resnet101} 
               --fold {0, 1, 2, 3} 
               --benchmark coco 
               --nshot {1, 5} 
               --load "path_to_trained_model/best_model.pt"

3. FSS-1000

Pretrained models with tensorboard logs are available on our [Google Drive].

python test.py --backbone {vgg16, resnet50, resnet101} 
               --benchmark fss 
               --nshot {1, 5} 
               --load "path_to_trained_model/best_model.pt"

4. Evaluation without support feature masking on PASCAL-5i

  • To reproduce the results in Tab.1 of our main paper, COMMENT OUT line 51 in hsnet.py: support_feats = self.mask_feature(support_feats, support_mask.clone())

Pretrained models with tensorboard logs are available on our [Google Drive].

python test.py --backbone resnet101 
               --fold {0, 1, 2, 3} 
               --benchmark pascal
               --nshot {1, 5} 
               --load "path_to_trained_model/best_model.pt"

Visualization

  • To visualize mask predictions, add command line argument --visualize: (prediction results will be saved under vis/ directory)
  python test.py '...other arguments...' --visualize  

Example qualitative results (1-shot):

BibTeX

If you use this code for your research, please consider citing:

@article{min2021hypercorrelation, 
   title={Hypercorrelation Squeeze for Few-Shot Segmentation},
   author={Juhong Min and Dahyun Kang and Minsu Cho},
   journal={arXiv preprint arXiv:2104.01538},
   year={2021}
}
Owner
Juhong Min
research interest in computer vision
Juhong Min
[CVPR 2022] Structured Sparse R-CNN for Direct Scene Graph Generation

Structured Sparse R-CNN for Direct Scene Graph Generation Our paper Structured Sparse R-CNN for Direct Scene Graph Generation has been accepted by CVP

Multimedia Computing Group, Nanjing University 44 Dec 23, 2022
Generative Models for Graph-Based Protein Design

Graph-Based Protein Design This repo contains code for Generative Models for Graph-Based Protein Design by John Ingraham, Vikas Garg, Regina Barzilay

John Ingraham 159 Dec 15, 2022
EMNLP 2021 paper The Devil is in the Detail: Simple Tricks Improve Systematic Generalization of Transformers.

Codebase for training transformers on systematic generalization datasets. The official repository for our EMNLP 2021 paper The Devil is in the Detail:

Csordás Róbert 57 Nov 21, 2022
Logistic Bandit experiments. Official code for the paper "Jointly Efficient and Optimal Algorithms for Logistic Bandits".

Code for the paper Jointly Efficient and Optimal Algorithms for Logistic Bandits, by Louis Faury, Marc Abeille, Clément Calauzènes and Kwang-Sun Jun.

Faury Louis 1 Jan 22, 2022
SpiroMask: Measuring Lung Function Using Consumer-Grade Masks

SpiroMask: Measuring Lung Function Using Consumer-Grade Masks Anonymised repository for paper submitted for peer review at ACM HEALTH (October 2021).

0 May 10, 2022
This project helps to colorize grayscale images using multiple exemplars.

Multiple Exemplar-based Deep Colorization (Pytorch Implementation) Pretrained Model [Jitendra Chautharia](IIT Jodhpur)1,3, Prerequisites Python 3.6+ N

jitendra chautharia 3 Aug 05, 2022
Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework

Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework

Google Cloud Platform 792 Dec 28, 2022
Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB)

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
Official code for our EMNLP2021 Outstanding Paper MindCraft: Theory of Mind Modeling for Situated Dialogue in Collaborative Tasks

MindCraft Authors: Cristian-Paul Bara*, Sky CH-Wang*, Joyce Chai This is the official code repository for the paper (arXiv link): Cristian-Paul Bara,

Situated Language and Embodied Dialogue (SLED) Research Group 14 Dec 29, 2022
SCALoss: Side and Corner Aligned Loss for Bounding Box Regression (AAAI2022).

SCALoss PyTorch implementation of the paper "SCALoss: Side and Corner Aligned Loss for Bounding Box Regression" (AAAI 2022). Introduction IoU-based lo

TuZheng 20 Sep 07, 2022
SCNet: Learning Semantic Correspondence

SCNet Code Region matching code is contributed by Kai Han ([email protected]). Dense

Kai Han 34 Sep 06, 2022
Software that can generate photos from paintings, turn horses into zebras, perform style transfer, and more.

CycleGAN PyTorch | project page | paper Torch implementation for learning an image-to-image translation (i.e. pix2pix) without input-output pairs, for

Jun-Yan Zhu 11.5k Dec 30, 2022
Lab Materials for MIT 6.S191: Introduction to Deep Learning

This repository contains all of the code and software labs for MIT 6.S191: Introduction to Deep Learning! All lecture slides and videos are available

Alexander Amini 5.6k Dec 26, 2022
Sparse R-CNN: End-to-End Object Detection with Learnable Proposals, CVPR2021

End-to-End Object Detection with Learnable Proposal, CVPR2021

Peize Sun 1.2k Dec 27, 2022
Yet another video caption

Yet another video caption

Fan Zhimin 5 May 26, 2022
Real-Time Multi-Contact Model Predictive Control via ADMM

Here, you can find the code for the paper 'Real-Time Multi-Contact Model Predictive Control via ADMM'. Code is currently being cleared up and optimize

17 Dec 28, 2022
Tensorflow-seq2seq-tutorials - Dynamic seq2seq in TensorFlow, step by step

seq2seq with TensorFlow Collection of unfinished tutorials. May be good for educational purposes. 1 - simple sequence-to-sequence model with dynamic u

Matvey Ezhov 1k Dec 17, 2022
Implementation of SETR model, Original paper: Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers.

SETR - Pytorch Since the original paper (Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers.) has no official

zhaohu xing 112 Dec 16, 2022
Official implementation for (Show, Attend and Distill: Knowledge Distillation via Attention-based Feature Matching, AAAI-2021)

Show, Attend and Distill: Knowledge Distillation via Attention-based Feature Matching Official pytorch implementation of "Show, Attend and Distill: Kn

Clova AI Research 80 Dec 16, 2022
Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Context Terms

LESA Introduction This repository contains the official implementation of Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Cont

Chenglin Yang 20 Dec 31, 2021