CSAC - Collaborative Semantic Aggregation and Calibration for Separated Domain Generalization

Related tags

Deep LearningCSAC
Overview

CSAC

Introduction

This repository contains the implementation code for paper:

Collaborative Semantic Aggregation and Calibration for Separated Domain Generalization

Junkun Yuan, Xu Ma, Defang Chen, Kun Kuang, Fei Wu, Lanfen Lin

arXiv preprint, 2021

[arXiv]

Brief Abstract for the Paper


The existing domain generalization (DG) methods usually exploit the fusion of shared multi-source data for capturing domain invariance and training a generalizable model, which raises a dilemma between the generalization learning with shared multi-source data and the privacy protection of real-world sensitive data.

We introduce a separated domain generalization task with separated source datasets that can only be accessed locally for data privacy protection.

We propose a novel solution called Collaborative Semantic Aggregation and Calibration (CSAC) to enable this challenging task via local semantic acquisition, data-free semantic aggregation, and cross-layer semantic calibration.

Requirements

You may need to build suitable Python environment by installing the following packages (Anaconda is recommended).

  • python 3.8
  • pytorch 1.8.1 (with cuda 11.3)
  • torchvision 0.9.1
  • tensorboardx 2.4
  • numpy 1.21
  • qpsolvers 1.7

Device:

  • GPU with VRAM > 11GB (strictly).
  • Memory > 8GB.

Data Preparation

We list the adopted datasets in the following.

Datasets Download link
PACS [1] https://dali-dl.github.io/project_iccv2017.html
VLCS [2] http://www.mediafire.com/file/7yv132lgn1v267r/vlcs.tar.gz/file

Please note:

  • Our dataset split follows previous works like RSC (Code) [3].
  • Although these datasets are open-sourced, you may need to have permission to use the datasets under the datasets' license.
  • If you're a dataset owner and do not want your dataset to be included here, please get in touch with us via a GitHub issue. Thanks!

Usage

  1. Prepare the datasets.
  2. Update root_dir in configs/datasets/dg/pacs.yaml/ and configs/datasets/dg/vlcs.yaml/ with the paths of PACS and VLCS datasets, respectively.
  3. Run the code with command:
nohup sh run.sh > run.txt 2>&1 &
  1. Check results in logs/(dataset)_(network)/(target domain)/(time)/logs.txt .

Citation

If you find our code or idea useful for your research, please consider citing our work.

@article{yuan2021collaborative,
  title={Collaborative Semantic Aggregation and Calibration for Separated Domain Generalization},
  author={Yuan, Junkun and Ma, Xu and Chen, Defang and Kuang, Kun and Wu, Fei and Lin, Lanfen},
  journal={arXiv e-prints},
  pages={arXiv--2110},
  year={2021}
}

Contact

If you have any questions, feel free to contact us through email ([email protected] or [email protected]) or GitHub issues. Thanks!

References

[1] Li, Da, et al. "Deeper, broader and artier domain generalization." Proceedings of the IEEE international conference on computer vision. 2017.

[2] Fang, Chen, Ye Xu, and Daniel N. Rockmore. "Unbiased metric learning: On the utilization of multiple datasets and web images for softening bias." Proceedings of the IEEE International Conference on Computer Vision. 2013.

[3] Huang, Zeyi, et al. "Self-challenging improves cross-domain generalization." Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part II 16. Springer International Publishing, 2020.

Owner
ScottYuan
CS PhD student.
ScottYuan
Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021)

UNITE and UNITE+ Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021) Unbalanced Intrinsic Feature Transport for Exemplar-bas

Fangneng Zhan 183 Nov 09, 2022
A short code in python, Enchpyter, is able to encrypt and decrypt words as you determine, of course

Enchpyter Enchpyter is a program do encrypt and decrypt any word you want (just letters). You enter how many letters jumps and write the word, so, the

João Assalim 2 Oct 10, 2022
SynNet - synthetic tree generation using neural networks

SynNet This repo contains the code and analysis scripts for our amortized approach to synthetic tree generation using neural networks. Our model can s

Wenhao Gao 60 Dec 29, 2022
Simple streamlit app to demonstrate HERE Tour Planning

Table of Contents About the Project Built With Getting Started Prerequisites Installation Usage Roadmap Contributing License Acknowledgements About Th

Amol 8 Sep 05, 2022
Pytorch implementation of ICASSP 2022 paper Attention Probe: Vision Transformer Distillation in the Wild

Attention Probe: Vision Transformer Distillation in the Wild Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, Yujiu Yang In ICASSP 2022 This code is

IIGROUP 6 Sep 21, 2022
Universal Adversarial Triggers for Attacking and Analyzing NLP (EMNLP 2019)

Universal Adversarial Triggers for Attacking and Analyzing NLP This is the official code for the EMNLP 2019 paper, Universal Adversarial Triggers for

Eric Wallace 248 Dec 17, 2022
Residual Dense Net De-Interlace Filter (RDNDIF)

Residual Dense Net De-Interlace Filter (RDNDIF) Work in progress deep de-interlacer filter. It is based on the architecture proposed by Bernasconi et

Louis 7 Feb 15, 2022
Temporally Coherent GAN SIGGRAPH project.

TecoGAN This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution

Duc Linh Nguyen 2 Jan 18, 2022
Code for: https://berkeleyautomation.github.io/bags/

DeformableRavens Code for the paper Learning to Rearrange Deformable Cables, Fabrics, and Bags with Goal-Conditioned Transporter Networks. Here is the

Daniel Seita 121 Dec 30, 2022
An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects different compression algorithms have.

ImageCompressionSimulation An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects o

James Park 1 Dec 11, 2021
High-Fidelity Pluralistic Image Completion with Transformers (ICCV 2021)

Image Completion Transformer (ICT) Project Page | Paper (ArXiv) | Pre-trained Models | Supplemental Material This repository is the official pytorch i

Ziyu Wan 243 Jan 03, 2023
PyTorch module to use OpenFace's nn4.small2.v1.t7 model

OpenFace for Pytorch Disclaimer: This codes require the input face-images that are aligned and cropped in the same way of the original OpenFace. * I m

Pete Tae-hoon Kim 176 Dec 12, 2022
Official PyTorch implementation of paper: Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation (ICCV 2021 Oral Presentation)

SML (ICCV 2021, Oral) : Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Standardi

SangHun 61 Dec 27, 2022
TensorFlow implementation of PHM (Parameterization of Hypercomplex Multiplication)

Parameterization of Hypercomplex Multiplications (PHM) This repository contains the TensorFlow implementation of PHM (Parameterization of Hypercomplex

Aston Zhang 9 Oct 26, 2022
CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

CLUES: Few-Shot Learning Evaluation in Natural Language Understanding This repo contains the data and source code for baseline models in the NeurIPS 2

Microsoft 29 Dec 29, 2022
Source codes of CenterTrack++ in 2021 ICME Workshop on Big Surveillance Data Processing and Analysis

MOT Tracked object bounding box association (CenterTrack++) New association method based on CenterTrack. Two new branches (Tracked Size and IOU) are a

36 Oct 04, 2022
A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud Completion

A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud Completion This repo intends to release code for our work: Zhaoyang Lyu*, Zhifeng

Zhaoyang Lyu 68 Jan 03, 2023
Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations.

S2VC Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations. In thi

81 Dec 15, 2022
Housing Price Prediction

This project aim was to predict the price of houses in the Boston area during the great financial crisis through regression, as well as classify houses into different quality categories according to

Florian Klement 1 Jan 27, 2022
Code in conjunction with the publication 'Contrastive Representation Learning for Hand Shape Estimation'

HanCo Dataset & Contrastive Representation Learning for Hand Shape Estimation Code in conjunction with the publication: Contrastive Representation Lea

Computer Vision Group, Albert-Ludwigs-Universität Freiburg 38 Dec 13, 2022