A web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks

Overview

Explorer Demo

This project is a web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks.

Thanks for NVlabs' excellent work.

Features

Explorer

See how the result image response to changes of latent code & psi.

Projector Demo 1

Projector

Test the projection from image to latent code. Left is target image, right is result from generator model. Total step count and yielding interval can be configured in this page. And another hyperparameter regularize noise weight can be configured statically, see Environment Configurations.

You can save the projection result in a zip package, and this page can accept projector zip file dropping, so this feature enable you to share your projector result to others.

Projector Demo 1 Projector Demo 2

W latent space extension

We added an env switch of UNIFORM_LATENTS to denote using uniform or separated W latent code when projecting image. This is the results comparison (center is the target):

W latents result   ⇨   target image   ⇦   W+ latents result

Projection animation exporting

You can also export image projection result sequence as a gif animation:

  ⇦  

Face image pose alignment

Dataset of FFHQ's generation has a crop process to align face area.see paper, appendix C. So the output distribution of StyleGAN model learned on FFHQ has a strong prior tendency on features position. We observed that many face images projection suffers semantic mistakes, e.g. erasing original eyes and transforming eyebrow into eyes during projection fitting (however you can get a similar face at last, but it may yield freak results when you manipulate the latent code). Finally we figured out that mainly caused by unalignment with training dataset prior distribution.

Then we import the face-api to measure and align human face images as below:

- 🙂 - ✄ →

Gratefulness for the authorization by @芈砾 to use his nice opus.

Click the button [ 🙂 ] after target image loaded, if the face detection succeed, you will get the face landmark and proposed crop box. The detection result may be not very accurate, now you can adjust 3 anchor marks manually to align left eye (red), right eye (green) and mouth (blue). Then click button [✄] to apply the crop.

Merger

Once you get some latent codes by projector or turning, you can test to mix features by interpolating latent values on every W layer. This is a demo.

Merger Demo

The pair of top-left images are the source to merge, press Ctrl+V in the hash box below either image to paste input latent code via clipboard, and Ctrl+C on the right blank area to copy result latent code.

Mapping Network Research

mapping plot

I attempt to explore the StyleGAN mapping network high-dimensional terrain aspect, read this article for details.

Usage

Run the web server:

python ./http_server.py

If this works, open http://localhost:8186 in your browser.

To ensure it working, please read the following requirements before do this.

Requirements

Python

Install requirement libraries with pip, reference to requirements.txt.

Network Files

Before run the web server, StyleGAN2 pre-trained network files must be placed in local disk (recommended the folder models). You can download network files following to StyleGAN2's code.

For memory reason, only one generator model can be loaded when running the web server. Network file paths can be configured by env variables. Create a file named .env.local under project root to configure chosen model and network file paths. Network file name/paths are configured in key-value style, e.g.:

MODEL_NAME=ffhq		# ffhq is the default value, so this line can be ignored 

MODEL_PATH_ffhq=./models/stylegan2-ffhq-config-f.pkl
MODEL_PATH_cat=./models/stylegan2-cat-config-f.pkl
# And so on...

Alternately, you can also choose generator model name by start command argument, e.g.:

python ./http_server.py cat

Or, for nodejs developer:

yarn start cat

Besides generators, the network LPIPS is required when run image projector, the default local path is ./models/vgg16_zhang_perceptual.pkl, download link. You can also change local path by env variable MODEL_PATH_LPIPS.

For Windows

According to StyleGAN2 README.md, here are our additional help instructions:

  • MSVC

    NOTE: Visual Studio 2019 Community Edition seems not compatible with CUDA 10.0, Visual Studio 2017 works.

    Append the actual msvc binary directory (find in your own disk) into dnnlib/tflib/custom_ops.py, the array of compiler_bindir_search_path. For example:

     -	'C:/Program Files (x86)/Microsoft Visual Studio 14.0/vc/bin',
     +	'C:/Program Files (x86)/Microsoft Visual Studio/2017/BuildTools/VC/Tools/MSVC/14.16.27023/bin/Hostx64/x64',
  • NVCC

    To test if nvcc is configured properly, dowload test_nvcc.cu in StyleGAN2 project. And the test command should specify binary path:

     nvcc test_nvcc.cu -o test_nvcc -run -ccbin "C:\Program Files (x86)\Microsoft VisualStudio\2017\BuildTools\VC\Tools\MSVC\14.16.27023\bin\Hostx64\x64"

    Actual path to different msvc edition may have difference in detail. If this succeed, it will build a file named test_nvcc.exe.

  • Tips for tensorflow 1.15

    Tensorflow 1.15 can work under Windows, but NVCC compiling may encounter C++ including path problem. Here is an easy workaround: make a symbolic link in python installation directory Python36\Lib\site-packages\tensorflow_core:

     mklink /J tensorflow tensorflow_core
  • Tips for tensorflow 2.x

    Tensorflow 2.0+ can work now! I have solved the compatibility issues with TF2 already, including some modification of code bundled in pickle. Except one problem on Windows, if you encountered this:

    C:/Users/xxx/AppData/Local/Programs/Python/Python36/lib/site-packages/tensorflow/include\unsupported/Eigen/CXX11/Tensor(74): fatal error C1083: Cannot open include file: 'unistd.h': No such file or directory

    Just open this file and comment out this line simply:

    #include

    It seems a bug of tensorflow, and I have committed an issue for them.

  • cudafe++ issue

    If you encountered python console error like:

     nvcc error : 'cudafe++' died with status 0xC0000005 (ACCESS_VIOLATION)
    

    That may caused by a bug from CUDA 10.0, you can fix this issue by replacing your cudafe++.exe file in CUDA program bin directory by the same name file from CUDA 10.1 or higher version. And you are welcome to download my backup to avoid install a whole new version CUDA.

Environment Configurations

To manage environment variables conveniently, create a configuration file named .env.local. All avaiable env list:

Key Description Default Value
HTTP_HOST Web server host. 127.0.0.1
HTTP_PORT Web server port. 8186
MODEL_NAME Name for the generator model to load, this can be overwrite by the first argument of start script. ffhq
MODEL_PATH_LPIPS File path for LPIPS model. ./models/vgg16_zhang_perceptual.pkl
MODEL_PATH_* Generator network file path dictionary. See examples.
REGULARIZE_NOISE_WEIGHT Projector training hyperparameter. Float. 1e5
INITIAL_NOISE_FACTOR Projector training hyperparameter. Float. 0.05
EUCLIDEAN_DIST_WEIGHT Projector training hyperparameter. Float. 1
REGULARIZE_MAGNITUDE_WEIGHT Projector training hyperparameter. Float. 0
UNIFORM_LATENTS Use uniform latents for all feature layers (consistent with origin StyleGAN2 paper). Boolean, 0 or 1 0

 

 

 

A Bonus :)

Owner
K.L.
K.L.
Compact Bilinear Pooling for PyTorch

Compact Bilinear Pooling for PyTorch. This repository has a pure Python implementation of Compact Bilinear Pooling and Count Sketch for PyTorch. This

Grégoire Payen de La Garanderie 234 Dec 07, 2022
Empowering journalists and whistleblowers

Onymochat Empowering journalists and whistleblowers Onymochat is an end-to-end encrypted, decentralized, anonymous chat application. You can also host

Samrat Dutta 19 Sep 02, 2022
4D Human Body Capture from Egocentric Video via 3D Scene Grounding

4D Human Body Capture from Egocentric Video via 3D Scene Grounding [Project] [Paper] Installation: Our method requires the same dependencies as SMPLif

Miao Liu 37 Nov 08, 2022
Adversarial Robustness Toolbox (ART) - Python Library for Machine Learning Security - Evasion, Poisoning, Extraction, Inference - Red and Blue Teams

Adversarial Robustness Toolbox (ART) is a Python library for Machine Learning Security. ART provides tools that enable developers and researchers to defend and evaluate Machine Learning models and ap

3.4k Jan 04, 2023
Deep Learning ❤️ OneFlow

Deep Learning with OneFlow made easy 🚀 ! Carefree? carefree-learn aims to provide CAREFREE usages for both users and developers. User Side Computer V

21 Oct 27, 2022
Cross-platform-profile-pic-changer - Script to change profile pictures across multiple platforms

cross-platform-profile-pic-changer script to change profile pictures across mult

4 Jan 17, 2022
The official repository for paper ''Domain Generalization for Vision-based Driving Trajectory Generation'' submitted to ICRA 2022

DG-TrajGen The official repository for paper ''Domain Generalization for Vision-based Driving Trajectory Generation'' submitted to ICRA 2022. Our Meth

Wang 25 Sep 26, 2022
Effective Use of Transformer Networks for Entity Tracking

Effective Use of Transformer Networks for Entity Tracking (EMNLP19) This is a PyTorch implementation of our EMNLP paper on the effectiveness of pre-tr

5 Nov 06, 2021
The Multi-Mission Maximum Likelihood framework (3ML)

PyPi Conda The Multi-Mission Maximum Likelihood framework (3ML) A framework for multi-wavelength/multi-messenger analysis for astronomy/astrophysics.

The Multi-Mission Maximum Likelihood (3ML) 62 Dec 30, 2022
Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021)

Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021) Alexey Nekrasov*, Jonas Schult*, Or Litany, Bastian Leibe, Francis Engelmann Mix3D is

Alexey Nekrasov 189 Dec 26, 2022
Generating Fractals on Starknet with Cairo

StarknetFractals Generating the mandelbrot set on Starknet Current Implementation generates 1 pixel of the fractal per call(). It takes a few minutes

Orland0x 10 Jul 16, 2022
Program your own vulkan.gpuinfo.org query in Python. Used to determine baseline hardware for WebGPU.

query-gpuinfo-data License This software is not presently released under a license. The data in data/ is obtained under CC BY 4.0 as specified there.

Kai Ninomiya 5 Jul 18, 2022
This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (EMNLP 2020)

Towards Persona-Based Empathetic Conversational Models (PEC) This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (E

Zhong Peixiang 35 Nov 17, 2022
A platform to display the carbon neutralization information for researchers, decision-makers, and other participants in the community.

Welcome to Carbon Insight Carbon Insight is a platform aiming to display the carbon neutralization roadmap for researchers, decision-makers, and other

Microsoft 14 Oct 24, 2022
This repository contains the code for the paper "Hierarchical Motion Understanding via Motion Programs"

Hierarchical Motion Understanding via Motion Programs (CVPR 2021) This repository contains the official implementation of: Hierarchical Motion Underst

Sumith Kulal 40 Dec 05, 2022
[ WSDM '22 ] On Sampling Collaborative Filtering Datasets

On Sampling Collaborative Filtering Datasets This repository contains the implementation of many popular sampling strategies, along with various expli

Noveen Sachdeva 17 Dec 08, 2022
A simple Tensorflow based library for deep and/or denoising AutoEncoder.

libsdae - deep-Autoencoder & denoising autoencoder A simple Tensorflow based library for Deep autoencoder and denoising AE. Library follows sklearn st

Rajarshee Mitra 147 Nov 18, 2022
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022
Implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Graphs".

PPO-BiHyb This is the official implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Grap

<a href=[email protected]"> 66 Nov 23, 2022