PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Condition Layer Normalization and Semi-Supervised Training in Text-To-Speech

Overview

Cross-Speaker-Emotion-Transfer - PyTorch Implementation

PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Condition Layer Normalization and Semi-Supervised Training in Text-To-Speech.

Quickstart

DATASET refers to the names of datasets such as RAVDESS in the following documents.

Dependencies

You can install the Python dependencies with

pip3 install -r requirements.txt

Also, install fairseq (official document, github) to utilize LConvBlock. Please check here to resolve any issue on installing it. Note that Dockerfile is provided for Docker users, but you have to install fairseq manually.

Inference

You have to download the pretrained models and put them in output/ckpt/DATASET/.

To extract soft emotion tokens from a reference audio, run

python3 synthesize.py --text "YOUR_DESIRED_TEXT" --speaker_id SPEAKER_ID --ref_audio REF_AUDIO_PATH --restore_step RESTORE_STEP --mode single --dataset DATASET

Or, to use hard emotion tokens from an emotion id, run

python3 synthesize.py --text "YOUR_DESIRED_TEXT" --speaker_id SPEAKER_ID --emotion_id EMOTION_ID --restore_step RESTORE_STEP --mode single --dataset DATASET

The dictionary of learned speakers can be found at preprocessed_data/DATASET/speakers.json, and the generated utterances will be put in output/result/.

Batch Inference

Batch inference is also supported, try

python3 synthesize.py --source preprocessed_data/DATASET/val.txt --restore_step RESTORE_STEP --mode batch --dataset DATASET

to synthesize all utterances in preprocessed_data/DATASET/val.txt. Please note that only the hard emotion tokens from a given emotion id are supported in this mode.

Training

Datasets

The supported datasets are

  • RAVDESS: This portion of the RAVDESS contains 1440 files: 60 trials per actor x 24 actors = 1440. The RAVDESS contains 24 professional actors (12 female, 12 male), vocalizing two lexically-matched statements in a neutral North American accent. Speech emotions includes calm, happy, sad, angry, fearful, surprise, and disgust expressions. Each expression is produced at two levels of emotional intensity (normal, strong), with an additional neutral expression.

Your own language and dataset can be adapted following here.

Preprocessing

  • For a multi-speaker TTS with external speaker embedder, download ResCNN Softmax+Triplet pretrained model of philipperemy's DeepSpeaker for the speaker embedding and locate it in ./deepspeaker/pretrained_models/.

  • Run

    python3 prepare_align.py --dataset DATASET
    

    for some preparations.

    For the forced alignment, Montreal Forced Aligner (MFA) is used to obtain the alignments between the utterances and the phoneme sequences. Pre-extracted alignments for the datasets are provided here. You have to unzip the files in preprocessed_data/DATASET/TextGrid/. Alternately, you can run the aligner by yourself.

    After that, run the preprocessing script by

    python3 preprocess.py --dataset DATASET
    

Training

Train your model with

python3 train.py --dataset DATASET

Useful options:

  • To use Automatic Mixed Precision, append --use_amp argument to the above command.
  • The trainer assumes single-node multi-GPU training. To use specific GPUs, specify CUDA_VISIBLE_DEVICES=<GPU_IDs> at the beginning of the above command.

TensorBoard

Use

tensorboard --logdir output/log

to serve TensorBoard on your localhost. The loss curves, synthesized mel-spectrograms, and audios are shown.

Notes

  • The current implementation is not trained in a semi-supervised way due to the small dataset size. But it can be easily activated by specifying target speakers and passing no emotion ID with no emotion classifier loss.
  • In Decoder, 15 X 1 LConv Block is used instead of 17 X 1 due to memory issues.
  • Two options for embedding for the multi-speaker TTS setting: training speaker embedder from scratch or using a pre-trained philipperemy's DeepSpeaker model (as STYLER did). You can toggle it by setting the config (between 'none' and 'DeepSpeaker').
  • DeepSpeaker on RAVDESS dataset shows clear identification among speakers. The following figure shows the T-SNE plot of extracted speaker embedding.

  • For vocoder, HiFi-GAN and MelGAN are supported.

Citation

Please cite this repository by the "Cite this repository" of About section (top right of the main page).

References

Comments
  • loading state dict ——size mismatch

    loading state dict ——size mismatch

    I have a problem when I use your pre-trained model for synthesis. However, the following error happens:

    RuntimeError: Error(s) in loading state_dict for XSpkEmoTrans: size mismatch for duratin_predictor.lconv_stack.0.conv_layer.weight: copying a param with shape torch.Size([2, 3]) from checkpoint, the shape in current model is torch.Size([2, 1, 3]). size mismatch for decoder.lconv_stack.0.conv_layer.weight: copying a param with shape torch.Size([8, 15]) from checkpoint, the shape in current model is torch.Size([8, 1, 15]). size mismatch for decoder.lconv_stack.1.conv_layer.weight: copying a param with shape torch.Size([8, 15]) from checkpoint, the shape in current model is torch.Size([8, 1, 15]). size mismatch for decoder.lconv_stack.2.conv_layer.weight: copying a param with shape torch.Size([8, 15]) from checkpoint, the shape in current model is torch.Size([8, 1, 15]). size mismatch for decoder.lconv_stack.3.conv_layer.weight: copying a param with shape torch.Size([8, 15]) from checkpoint, the shape in current model is torch.Size([8, 1, 15]). size mismatch for decoder.lconv_stack.4.conv_layer.weight: copying a param with shape torch.Size([8, 15]) from checkpoint, the shape in current model is torch.Size([8, 1, 15]). size mismatch for decoder.lconv_stack.5.conv_layer.weight: copying a param with shape torch.Size([8, 15]) from checkpoint, the shape in current model is torch.Size([8, 1, 15]).

    opened by cythc 2
  • Closed Issue

    Closed Issue

    Hi, I synthesized some samples with the provided pretrained models and the speaker embeedding from philipperemy's DeepSpeaker repo. However, the sampled results were bad in that all of the words were garbled and I could not hear any words.

    I am not sure if I am doing anything wrong since I just cloned your repository, downloaded the RAVDESS data and did everything listed in the README.md. Based on how I was able to generate samples, I do not think I am doing anything wrong, but was anyone able to synthesize good speech? And to the author of this repo @keonlee9420 do you mind uploading some samples generated from the pretrained models from the README.md?

    Thanks in advance.

    opened by jinny1208 0
  • The generated wav is not good

    The generated wav is not good

    Hi, thank you for open source the wonderful work ! I followed your instructions 1) install lightconv_cuda, 2) download the checkpoint, 3) download the speaker embedding npy. However, the generated result is not good.

    Below is my running command

    python3 synthesize.py \
      --text "Hello world" \
      --speaker_id Actor_22 \
      --emotion_id sad \
      --restore_step 450000 \
      --mode single \
      --dataset RAVDESS
    
    # sh run.sh 
    2022-11-30 13:45:22.626404: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0
    Device of XSpkEmoTrans: cuda
    Removing weight norm...
    Raw Text Sequence: Hello world
    Phoneme Sequence: {HH AH0 L OW1 W ER1 L D}
    

    ENV

    python 3.6.8
    fairseq                 0.10.2
    torch                   1.7.0+cu110
    CUDA 11.0
    

    Hello world_Actor_22_sad

    Hello world_Actor_22_sad.wav.zip

    opened by pangtouyuqqq 1
  • Synthesis with other person out of RAVDESS

    Synthesis with other person out of RAVDESS

    Hello author, Firstly, thank you for giving this repo, it is really nice. I have a question that:

    1. I download CMU data with single person with 100 audios and make speaker embedding vector and synthesis with this, the performance is not good. I cannot detect any words.
    2. Should we need to fine-tuning deep-speaker model to generate speaker embedding with my data.

    Thank you

    opened by hathubkhn 5
  • Error using the pretrained model

    Error using the pretrained model

    I'm trying to run synthesize with the pretrained model, like such:

    python3 synthesize.py --text "This sentence is a test" --speaker_id Actor_01 --emotion_id neutral --restore_step 450000  --dataset RAVDESS --mode single
    

    but I get an error in layer size:

    Traceback (most recent call last):
      File "synthesize.py", line 206, in <module>
        model = get_model(args, configs, device, train=False,
      File "/home/jrings/diviai/installs/Cross-Speaker-Emotion-Transfer/utils/model.py", line 27, in get_model
        model.load_state_dict(model_dict, strict=False)
      File "<...>/torch/nn/modules/module.py", line 1604, in load_state_dict
        raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
    RuntimeError: Error(s) in loading state_dict for XSpkEmoTrans:
    	size mismatch for emotion_emb.etl.embed: copying a param with shape torch.Size([8, 64]) from checkpoint, the shape in current model is torch.Size([9, 64]).
    	size mismatch for duratin_predictor.lconv_stack.0.conv_layer.weight: copying a param with shape torch.Size([2, 1, 3]) from checkpoint, the shape in current model is torch.Size([2, 3]).
    	size mismatch for decoder.lconv_stack.0.conv_layer.weight: copying a param with shape torch.Size([8, 1, 15]) from checkpoint, the shape in current model is torch.Size([8, 15]).
    	size mismatch for decoder.lconv_stack.1.conv_layer.weight: copying a param with shape torch.Size([8, 1, 15]) from checkpoint, the shape in current model is torch.Size([8, 15]).
    	size mismatch for decoder.lconv_stack.2.conv_layer.weight: copying a param with shape torch.Size([8, 1, 15]) from checkpoint, the shape in current model is torch.Size([8, 15]).
    	size mismatch for decoder.lconv_stack.3.conv_layer.weight: copying a param with shape torch.Size([8, 1, 15]) from checkpoint, the shape in current model is torch.Size([8, 15]).
    	size mismatch for decoder.lconv_stack.4.conv_layer.weight: copying a param with shape torch.Size([8, 1, 15]) from checkpoint, the shape in current model is torch.Size([8, 15]).
    	size mismatch for decoder.lconv_stack.5.conv_layer.weight: copying a param with shape torch.Size([8, 1, 15]) from checkpoint, the shape in current model is torch.Size([8, 15]).
    
    opened by jrings 1
  • speaker embedding npy file not found

    speaker embedding npy file not found

    Hi,

    I am facing the following issue while synthesizing using pretrained model.

    Removing weight norm... Traceback (most recent call last): File "synthesize.py", line 234, in )) if load_spker_embed else None File "/home/sagar/tts/Cross-Speaker-Emotion-Transfer/venv/lib/python3.7/site-packages/numpy/lib/npyio.py", line 417, in load fid = stack.enter_context(open(os_fspath(file), "rb")) FileNotFoundError: [Errno 2] No such file or directory: './preprocessed_data/RAVDESS/spker_embed/Actor_19-spker_embed.npy'

    Please suggest any way out. Thanks in advance -Sagar

    opened by raikarsagar 4
Releases(v0.2.0)
Owner
Keon Lee
Expressive Speech Synthesis | Conversational AI | Open-domain Dialog | NLP | Generative Models | Empathic Computing | HCI
Keon Lee
Pytorch implementation of NEGEV method. Paper: "Negative Evidence Matters in Interpretable Histology Image Classification".

Pytorch 1.10.0 code for: Negative Evidence Matters in Interpretable Histology Image Classification (https://arxiv. org/abs/xxxx.xxxxx) Citation: @arti

Soufiane Belharbi 4 Dec 01, 2022
Official implementation of Few-Shot and Continual Learning with Attentive Independent Mechanisms

Few-Shot and Continual Learning with Attentive Independent Mechanisms This repository is the official implementation of Few-Shot and Continual Learnin

Chikan_Huang 25 Dec 08, 2022
Introducing neural networks to predict stock prices

IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o

Vivek Palaniappan 637 Jan 04, 2023
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification (NeurIPS 2021)

Graph Posterior Network This is the official code repository to the paper Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classifica

Maximilian Stadler 30 Dec 05, 2022
Python and Julia in harmony.

PythonCall & JuliaCall Bringing Python® and Julia together in seamless harmony: Call Python code from Julia and Julia code from Python via a symmetric

Christopher Rowley 414 Jan 07, 2023
GitHub repository for the ICLR Computational Geometry & Topology Challenge 2021

ICLR Computational Geometry & Topology Challenge 2022 Welcome to the ICLR 2022 Computational Geometry & Topology challenge 2022 --- by the ICLR 2022 W

42 Dec 13, 2022
Dynamic Token Normalization Improves Vision Transformers

Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T

Wenqi Shao 20 Oct 09, 2022
September-Assistant - Open-source Windows Voice Assistant

September - Windows Assistant September is an open-source Windows personal assis

The Nithin Balaji 9 Nov 22, 2022
Deep-learning-roadmap - All You Need to Know About Deep Learning - A kick-starter

Deep Learning - All You Need to Know Sponsorship To support maintaining and upgrading this project, please kindly consider Sponsoring the project deve

Instill AI 4.4k Dec 26, 2022
MoCap-Solver: A Neural Solver for Optical Motion Capture Data

MoCap-Solver is a data-driven-based robust marker denoising method, which takes raw mocap markers as input and outputs corresponding clean markers and skeleton motions.

55 Dec 28, 2022
a Pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021"

A pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021" 1. Notes This is a pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in

91 Dec 26, 2022
Voice of Pajlada with model and weights.

Pajlada TTS Stripped down version of ForwardTacotron (https://github.com/as-ideas/ForwardTacotron) with pretrained weights for Pajlada's (https://gith

6 Sep 03, 2021
SatelliteNeRF - PyTorch-based Neural Radiance Fields adapted to satellite domain

SatelliteNeRF PyTorch-based Neural Radiance Fields adapted to satellite domain.

Kai Zhang 46 Nov 20, 2022
Efficient training of deep recommenders on cloud.

HybridBackend Introduction HybridBackend is a training framework for deep recommenders which bridges the gap between evolving cloud infrastructure and

Alibaba 111 Dec 23, 2022
Pure python implementation reverse-mode automatic differentiation

MiniGrad A minimal implementation of reverse-mode automatic differentiation (a.k.a. autograd / backpropagation) in pure Python. Inspired by Andrej Kar

Kenny Song 76 Sep 12, 2022
Search Youtube Video and Get Video info

PyYouTube Get Video Data from YouTube link Installation pip install PyYouTube How to use it ? Get Videos Data from pyyoutube import Data yt = Data("ht

lokaman chendekar 35 Nov 25, 2022
Least Square Calibration for Peer Reviews

Least Square Calibration for Peer Reviews Requirements gurobipy - for solving convex programs GPy - for Bayesian baseline numpy pandas To generate p

Sigma <a href=[email protected]"> 1 Nov 01, 2021
StyleSwin: Transformer-based GAN for High-resolution Image Generation

StyleSwin This repo is the official implementation of "StyleSwin: Transformer-based GAN for High-resolution Image Generation". By Bowen Zhang, Shuyang

Microsoft 349 Dec 28, 2022
DARTS-: Robustly Stepping out of Performance Collapse Without Indicators

[ICLR'21] DARTS-: Robustly Stepping out of Performance Collapse Without Indicators [openreview] Authors: Xiangxiang Chu, Xiaoxing Wang, Bo Zhang, Shun

55 Nov 01, 2022
Code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms.

RDC-SLAM This repository contains code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms. The system takes in

40 Nov 19, 2022