Official repository of IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSUMPTION.

Overview

PWC

IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSUMPTION

This is the official repository of IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSUMPTION. This repo includes all source codes (including data preprocessing code, training code and testing code). Have fun!

Data preparation

We use the training data of Adobe Image Matting to train our model. Please follow the instruction of Adobe Image Matting (AIM) to obtain the training foreground and background as well as the testing data.

Please modify the variable train_path_base in matting/utils/config.py such that the original AIM training foreground images are in the folder train_path_base + "/fg", and place the background images in the folder train_path_base + "/coco_bg", and place the ground truth alpha images in the folder train_path_base + "/alpha".

Please modify the variable test_path_base in matting/utils/config.py to locate the AIM testing data (also called Composition-1k testing data) such that the testing images are in the folder test_path_base + "/merged", and the testing trimaps are in the folder test_path_base + "/trimaps", and the testing ground truth alphas are in the folder test_path_base + "/alpha_copy".

Foreground re-estimation

As described in our paper, the foreground of Adobe Image Matting can be improved to be more consistent with the local smoothness assumption. To obtain the re-estimated foreground by our algorithm, just run python tools/reestimate_foreground_final.py.

Training

To train the model, first click here to download the pretrained encoder model resnetv1d50_b32x8_imagenet_20210531-db14775a.pth from the celebrated repo mmclassification. Place resnetv1d50_b32x8_imagenet_20210531-db14775a.pth in the folder pretrained. Then just run bash train.sh. Without bells and whistles, you will get the state-of-the-art model trained solely on this dataset! By default, the model is trained for the 200 epochs. Note that the reported results in our paper are the models trained for 100 epochs. Thus, you have a great chance to obtain a better model than that reported in our paper!

Testing

In this link, we provide the checkpoint with best performance reported in our paper.

To test our model on the Composition-1k testing data, please place the checkpoint in the folder model. Please change the 105 line of the file matting/models/model.py to for the_step in range(1). This modification in essense disables the backpropagating refinement, or else the testing process costs much time. Then just run bash test.sh.

To test our model on the testing set of AlphaMatting, just place the checkpoint in the folder model and run bash test_alpha_matting.sh.

Acknowledgments

If you use techniques in this project in your research, please cite our paper.

@misc{wang2021ImprovingDeepImageMatting,
      title={Improving Deep Image Matting Via Local Smoothness Assumption}, 
      author={Rui Wang and Jun Xie and Jiacheng Han and Dezhen Qi},
      year={2021},
      eprint={2112.13809},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

If you have any question, please feel free to raise issues!

Below I list some other open source (or partly open source) projects on image matting. I learn a lot from these projects. (For a more comprehensive list of projects on image matting, see wchstrife/Awesome-Image-Matting.) Thank you for sharing your codes! I am proud to be one of you!

Owner
电线杆
电线杆
Relative Positional Encoding for Transformers with Linear Complexity

Stochastic Positional Encoding (SPE) This is the source code repository for the ICML 2021 paper Relative Positional Encoding for Transformers with Lin

Antoine Liutkus 48 Nov 16, 2022
A python script to dump all the challenges locally of a CTFd-based Capture the Flag.

A python script to dump all the challenges locally of a CTFd-based Capture the Flag. Features Connects and logins to a remote CTFd instance. Dumps all

Podalirius 77 Dec 07, 2022
Pytorch implementation of YOLOX、PPYOLO、PPYOLOv2、FCOS an so on.

简体中文 | English miemiedetection 概述 miemiedetection是女装大佬咩酱基于YOLOX进行二次开发的个人检测库(使用的深度学习框架为pytorch),支持Windows、Linux系统,以女装大佬咩酱的名字命名。miemiedetection是一个不需要安装的

248 Jan 02, 2023
TAP: Text-Aware Pre-training for Text-VQA and Text-Caption, CVPR 2021 (Oral)

TAP: Text-Aware Pre-training TAP: Text-Aware Pre-training for Text-VQA and Text-Caption by Zhengyuan Yang, Yijuan Lu, Jianfeng Wang, Xi Yin, Dinei Flo

Microsoft 61 Nov 14, 2022
Deep Learning Theory

Deep Learning Theory 整理了一些深度学习的理论相关内容,持续更新。 Overview Recent advances in deep learning theory 总结了目前深度学习理论研究的六个方向的一些结果,概述型,没做深入探讨(2021)。 1.1 complexity

fq 103 Jan 04, 2023
Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition"

Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition" Pre-trained Deep Convo

Ankush Malaker 5 Nov 11, 2022
🐤 Nix-TTS: An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation

🐤 Nix-TTS An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation Rendi Chevi, Radityo Eko Prasojo, Alham Fikri Aji

Rendi Chevi 156 Jan 09, 2023
Official Pytorch implementation of "Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral)"

Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral): Official Project Webpage This repository provides the off

Kakao Enterprise Corp. 68 Dec 17, 2022
The code of paper "Block Modeling-Guided Graph Convolutional Neural Networks".

Block Modeling-Guided Graph Convolutional Neural Networks This repository contains the demo code of the paper: Block Modeling-Guided Graph Convolution

22 Dec 08, 2022
A system for quickly generating training data with weak supervision

Programmatically Build and Manage Training Data Announcement The Snorkel team is now focusing their efforts on Snorkel Flow, an end-to-end AI applicat

Snorkel Team 5.4k Jan 02, 2023
Computational Pathology Toolbox developed by TIA Centre, University of Warwick.

TIA Toolbox Computational Pathology Toolbox developed at the TIA Centre Getting Started All Users This package is for those interested in digital path

Tissue Image Analytics (TIA) Centre 156 Jan 08, 2023
Official implementation of the paper ``Unifying Nonlocal Blocks for Neural Networks'' (ICCV'21)

Spectral Nonlocal Block Overview Official implementation of the paper: Unifying Nonlocal Blocks for Neural Networks (ICCV'21) Spectral View of Nonloca

91 Dec 14, 2022
Code for NeurIPS 2020 article "Contrastive learning of global and local features for medical image segmentation with limited annotations"

Contrastive learning of global and local features for medical image segmentation with limited annotations The code is for the article "Contrastive lea

Krishna Chaitanya 152 Dec 22, 2022
INSPIRED: A Transparent Dialogue Dataset for Interactive Semantic Parsing

INSPIRED: A Transparent Dialogue Dataset for Interactive Semantic Parsing Existing studies on semantic parsing focus primarily on mapping a natural-la

7 Aug 22, 2022
Bayesian Meta-Learning Through Variational Gaussian Processes

vmgp This is the repository of Vivek Myers and Nikhil Sardana for our CS 330 final project, Bayesian Meta-Learning Through Variational Gaussian Proces

Vivek Myers 2 Nov 17, 2022
Implementation of 'X-Linear Attention Networks for Image Captioning' [CVPR 2020]

Introduction This repository is for X-Linear Attention Networks for Image Captioning (CVPR 2020). The original paper can be found here. Please cite wi

JDAI-CV 240 Dec 17, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Dec 29, 2022
A sketch extractor for anime/illustration.

Anime2Sketch Anime2Sketch: A sketch extractor for illustration, anime art, manga By Xiaoyu Xiang Updates 2021.5.2: Upload more example results of anim

Xiaoyu Xiang 1.6k Jan 01, 2023
Code for "Typilus: Neural Type Hints" PLDI 2020

Typilus A deep learning algorithm for predicting types in Python. Please find a preprint here. This repository contains its implementation (src/) and

47 Nov 08, 2022
Using contrastive learning and OpenAI's CLIP to find good embeddings for images with lossy transformations

Creating Robust Representations from Pre-Trained Image Encoders using Contrastive Learning Sriram Ravula, Georgios Smyrnis This is the code for our pr

Sriram Ravula 26 Dec 10, 2022