Simple Python script to scrape youtube channles of "Parity Technologies and Web3 Foundation" and translate them to well-known braille language or any language

Overview

Simple Python script to scrape youtube channles of "Parity Technologies and Web3 Foundation" and translate them to well-known braille language or any language

The script can be used for any channel or video for scraping, in addition will provide you with the option to get any automatic captions. Automatic captions are available in Dutch, English, French, German, Indonesian, Italian, Japanese, Korean, Portuguese, Russian, Spanish, Turkish, Vietnamese and more or any, so use it as you wish.

usage:

pip install youtube_transcript_api scrapetube codext

for default channel

python tube.py 

Custom channel

python tube.py UCSs5vZi0U7qHLkUjF3QnaWg

Get all videos for a channel

import scrapetube

videos = scrapetube.get_channel("UCCezIgC97PvUuR4_gbFUs5g")

for video in videos:
    print(video['videoId'])

Filter for manually created transcripts

transcript = transcript_list.find_manually_created_transcript(['de', 'en'])

or automatically generated ones

transcript = transcript_list.find_generated_transcript(['de', 'en'])

The methods find_generated_transcript, find_manually_created_transcript, find_generated_transcript return Transcript objects. They contain metadata regarding the transcript:

print(
    transcript.video_id,
    transcript.language,
    transcript.language_code,
    # whether it has been manually created or generated by YouTube
    transcript.is_generated,
    # whether this transcript can be translated or not
    transcript.is_translatable,
    # a list of languages the transcript can be translated to
    transcript.translation_languages,
)

Codext, contraction of "codecs" and "extension", is a tiny library that gathers a few additional encodings for use with codecs. While imported, it registers new encodings to a proxy codecs registry for making the encodings available from the codecs.(decode|encode|open) calls.

Currently set on Braille codext.encode("Little Endian", "braille") accept even morse

Codecs categories

  • native: the built-in codecs from the original codecs package
  • non-native: this special category regroups all the categories mentioned hereafter
  • base: baseX codecs (e.g. base, base100)
  • binary: codecs working on strings but applying their algorithms on their binary forms (e.g. baudot, manchester)
  • common: common codecs not included in the native ones or simly added for the purpose of standardization (e.g. octal, ordinal)
  • crypto: codecs related to cryptography algorithms (e.g. barbie, rot, xor)
  • language: language-related codecs (e.g. morse, navajo)
  • other: uncategorized codecs (e.g. letters, url)
  • stegano: steganography-related codecs (e.g. sms, resistor)
  • Except the native and non-native categories, the other ones are simply the name of the subdirectories (with "s" right-stripped) of the codext package.
codext.list("binary")
['baudot', 'baudot-spaced', 'baudot-tape', 'bcd', 'bcd-extended0', 'bcd-extended1', 'excess3', 'gray', 'manchester', 'manchester-inverted']
codext.list("language")
['braille', 'leet', 'morse', 'navajo', 'radio', 'southpark', 'southpark-icase', 'tom-tom']
codext.list("native")
['ascii', 'base64_codec', 'big5', 'big5hkscs', 'bz2_codec', 'cp037', 'cp273', 'cp424', 'cp437', 'cp500', 'cp775', 'cp850', 'cp852', 'cp855', 'cp857', 'cp858', 'cp860', 'cp861', 'cp862', 'cp863', ...]

Current channels for scrapping the transcript subtitles in English language and translate them to Braille language

Up to you list, just replace the Youtube channel ID string at 🤯

videoListName = scrapetube.get_channel("UClnw_bcNg4CAzF772qEtq4g")

YouTube uses automatic speech recognition to add automatic captions to videos. The feature is available in English, Dutch, French, German, Italian, Japanese, Korean, Portuguese, Russian, and Spanish. ASR is not available for all videos.

You can eding the language at 😇

transcript = transcript_list.find_generated_transcript(['en']).fetch()

Example output:

https://www.youtube.com/watch?v=ouMK-Q9S7cc
Web3 Foundation - The Next Evolution of the Internet - Dr. Gavin Wood
⠺⠑⠃⠒⠀⠋⠕⠥⠝⠙⠁⠞⠊⠕⠝⠀⠤⠀⠞⠓⠑⠀⠝⠑⠭⠞⠀⠑⠧⠕⠇⠥⠞⠊⠕⠝⠀⠕⠋⠀⠞⠓⠑⠀⠊⠝⠞⠑⠗⠝⠑⠞⠀⠤⠀⠙⠗⠨⠀⠛⠁⠧⠊⠝⠀⠺⠕⠕⠙
⠊⠀⠞⠓⠊⠝⠅⠀⠞⠓⠑⠗⠑⠀⠺⠑⠗⠑⠀⠁⠀⠇⠕⠞⠀⠕⠋⠀⠏⠑⠕⠏⠇⠑⠀⠞⠓⠁⠞⠀⠗⠑⠁⠇⠇⠽⠀⠃⠑⠇⠊⠑⠧⠑⠙⠀⠞⠓⠑⠀⠊⠝⠞⠑⠗⠝⠑⠞⠀⠺⠁⠎⠀⠺⠁⠎⠀⠛⠕⠝⠝⠁⠀⠃⠑⠀⠁⠀⠞⠗⠁⠝⠎⠋⠕⠗⠍⠁⠞⠊⠧⠑⠀⠞⠑⠉⠓⠝⠕⠇⠕⠛⠽⠀⠋⠕⠗⠀⠎⠕⠉⠊⠑⠞⠽⠀⠁⠝⠙⠀⠊⠀⠞⠓⠊⠝⠅⠀⠺⠓⠁⠞⠀⠓⠁⠏⠏⠑⠝⠑⠙⠀⠺⠁⠎⠀⠞⠓⠑⠀⠊⠝⠞⠑⠗⠝⠑⠞⠀⠺⠁⠎⠀⠙⠑⠎⠊⠛⠝⠑⠙⠀⠊⠝⠀⠎⠥⠉⠓⠀⠁⠀⠺⠁⠽⠀⠞⠓⠁⠞⠀⠊⠞⠀⠁⠇⠇⠕⠺⠑⠙⠀⠊⠞⠀⠺⠁⠎⠀⠋⠇⠑⠭⠊⠃⠇⠑⠀⠊⠞⠀⠁⠇⠇⠕⠺⠑⠙⠀⠑⠭⠊⠎⠞⠊⠝⠛⠀⠎⠞⠗⠥⠉⠞⠥⠗⠑⠎⠀⠕⠋⠀⠎⠕⠉⠊⠑⠞⠽⠀⠑⠭⠊⠎⠞⠊⠝⠛⠀⠺⠁⠽⠎⠀⠕⠋⠀⠙⠕⠊⠝⠛⠀⠃⠥⠎⠊⠝⠑⠎⠎⠀⠞⠕⠀⠎⠊⠍⠏⠇⠽⠀⠍⠕⠧⠑⠀⠕⠧⠑⠗⠀⠕⠝⠞⠕⠀⠞⠓⠑⠀⠙⠊⠛⠊⠞⠁⠇⠀⠙⠕⠍⠁⠊⠝⠀⠎⠕⠀⠺⠓⠑⠝⠀⠺⠑⠀⠙⠕⠀⠃⠁⠝⠅⠊⠝⠛⠀⠕⠝⠀⠞⠓⠑⠀⠊⠝⠞⠑⠗⠝⠑⠞⠀⠺⠑⠀⠎⠞⠊⠇⠇⠀⠥⠎⠑⠀⠁⠀⠃⠁⠝⠅⠀⠺⠑⠀⠎⠞⠊⠇⠇⠀⠥⠎⠑⠀⠕⠥⠗⠀⠑⠭⠊⠎⠞⠊⠝⠛⠀⠃⠗⠊⠉⠅⠤⠁⠝⠙⠤⠍⠕⠗⠞⠁⠗⠀⠞⠗⠁⠙⠊⠞⠊⠕⠝⠁⠇⠀⠲⠴⠴⠀⠽⠑⠁⠗⠀⠕⠇⠙⠀⠃⠁⠝⠅⠊⠝⠛⠀⠕⠗⠛⠁⠝⠊⠵⠁⠞⠊⠕⠝⠀⠊⠞⠄⠎⠀⠚⠥⠎⠞⠀⠞⠓⠁⠞⠀⠺⠑⠀⠁⠉⠉⠑⠎⠎⠀⠞⠓⠑⠍⠀⠞⠓⠗⠕⠥⠛⠓⠀⠁⠀⠺⠑⠃⠀⠏⠁⠛⠑⠀⠊⠞⠀⠓⠁⠎⠝⠄⠞⠀⠗⠑⠁⠇⠇⠽⠀⠁⠇⠞⠑⠗⠑⠙⠀⠎⠕⠉⠊⠑⠞⠽⠀⠊⠞⠀⠗⠑⠁⠇⠇⠽⠀⠺⠁⠎⠝⠄⠞⠀⠞⠗⠁⠝⠎⠋⠕⠗⠍⠁⠞⠊⠧⠑⠀⠁⠝⠙⠀⠊⠀⠞⠓⠊⠝⠅⠀⠞⠓⠁⠞⠄⠎⠀⠞⠓⠁⠞⠄⠎⠀⠑⠧⠑⠗⠍⠕⠗⠑⠀⠉⠇⠑⠁⠗⠀⠺⠓⠑⠝⠀⠺⠑⠀⠺⠓⠑⠝⠀⠺⠑⠀⠞⠓⠊⠝⠅⠀⠁⠃⠕⠥⠞⠀⠋⠁⠉⠑⠃⠕⠕⠅⠀⠁⠝⠙⠀⠺⠑⠀⠞⠓⠊⠝⠅⠀⠁⠃⠕⠥⠞⠀⠛⠕⠕⠛⠇⠑⠀⠞⠓⠑⠎⠑⠀⠁⠗⠑⠀⠝⠕⠞⠀⠝⠑⠺⠀⠺⠁⠽⠎⠀⠕⠋⠀⠺⠕⠗⠅⠊⠝⠛⠀⠝⠑⠺⠀⠺⠁⠽⠎⠀⠕⠋⠀⠏⠑⠕⠏⠇⠑⠀⠺⠕⠗⠅⠊⠝⠛⠀⠞⠕⠛⠑⠞⠓⠑⠗⠀⠊⠝⠀⠗⠑⠁⠇⠊⠞⠽⠀⠞⠓⠑⠽⠄⠗⠑⠀⠞⠓⠑⠀⠎⠁⠍⠑⠀⠅⠊⠝⠙⠎⠀⠕⠋⠀⠎⠞⠗⠥⠉⠞⠥⠗⠑⠎⠀⠞⠓⠁⠞⠀⠞⠓⠑⠀⠎⠁⠍⠑⠀⠓⠊⠑⠗⠁⠗⠉⠓⠊⠉⠁⠇⠀⠕⠗⠛⠁⠝⠊⠵⠁⠞⠊⠕⠝⠎⠀⠞⠓⠁⠞⠀⠓⠁⠧⠑⠀⠞⠓⠑⠀⠎⠁⠍⠑⠀⠉⠑⠝⠞⠗⠁⠇⠊⠵⠑⠙⠀⠃⠁⠝⠅⠀⠁⠉⠉⠕⠥⠝⠞⠎⠀⠞⠓⠁⠞⠀⠓⠁⠧⠑⠀⠞⠓⠑⠀⠎⠁⠍⠑⠀⠎⠕⠗⠞⠀⠕⠋⠀⠍⠥⠇⠞⠊⠝⠁⠞⠊⠕⠝⠁⠇⠀⠎⠞⠗⠥⠉⠞⠥⠗⠑⠀⠁⠎⠀⠁⠇⠇⠀⠕⠋⠀⠞⠓⠑⠀⠧⠁⠗⠊⠕⠥⠎⠀⠕⠞⠓⠑⠗⠀⠋⠕⠗⠞⠥⠝⠑⠀⠢⠴⠴⠀⠉⠕⠗⠏⠕⠗⠁⠞⠑⠀⠉⠕⠍⠏⠁⠝⠊⠑⠎⠀⠊⠝⠀⠗⠑⠁⠇⠊⠞⠽⠀⠞⠕⠀⠉⠓⠁⠝⠛⠑⠀⠎⠕⠉⠊⠑⠞⠽⠀⠺⠑⠀⠗⠑⠁⠇⠇⠽⠀⠝⠑⠑⠙⠀⠞⠕⠀⠙⠕⠀⠎⠕⠍⠑⠞⠓⠊⠝⠛⠀⠃⠑⠞⠞⠑⠗⠀⠞⠓⠁⠝⠀⠉⠗⠑⠁⠞⠊⠝⠛⠀⠞⠑⠉⠓⠝⠕⠇⠕⠛⠊⠑⠎⠀⠞⠓⠁⠞⠀⠚⠥⠎⠞⠀⠁⠇⠇⠕⠺⠀⠥⠎⠀⠞⠕⠀⠍⠊⠗⠗⠕⠗⠀⠓⠕⠺⠀⠎⠕⠉⠊⠑⠞⠽⠀⠺⠕⠗⠅⠎⠀⠁⠝⠽⠺⠁⠽⠀⠺⠑⠀⠝⠑⠑⠙⠀⠞⠕⠀⠉⠗⠑⠁⠞⠑⠀⠞⠑⠉⠓⠝⠕⠇⠕⠛⠊⠑⠎⠀⠞⠓⠁⠞⠀⠋⠕⠗⠛⠑⠀⠝⠑⠺⠀⠺⠁⠽⠎⠀⠕⠋⠀⠃⠑⠊⠝⠛⠀⠁⠃⠇⠑⠀⠞⠕⠀⠺⠕⠗⠅⠀⠺⠊⠞⠓⠀⠑⠁⠉⠓⠀⠕⠞⠓⠑⠗⠀⠁⠝⠙⠀⠞⠓⠁⠞⠄⠎⠀⠙⠊⠋⠋⠑⠗⠑⠝⠞⠀⠞⠕⠀⠝⠑⠺⠀⠺⠁⠽⠎⠀⠕⠋⠀⠃⠑⠊⠝⠛⠀⠁⠃⠇⠑⠀⠞⠕⠀⠉⠕⠍⠍⠥⠝⠊⠉⠁⠞⠑⠀⠺⠊⠞⠓⠀⠑⠁⠉⠓⠀⠕⠞⠓⠑⠗⠀⠊⠞⠄⠎⠀⠁⠇⠎⠕⠀⠛⠕⠞⠀⠞⠕⠀⠃⠑⠀⠝⠑⠺⠀⠺⠁⠽⠎⠀⠕⠋⠀⠃⠑⠊⠝⠛⠀⠁⠃⠇⠑⠀⠞⠕⠀⠕⠗⠛⠁⠝⠊⠵⠑⠀⠁⠝⠙⠀⠞⠗⠥⠎⠞⠀⠞⠓⠁⠞⠀⠑⠁⠉⠓⠀⠕⠞⠓⠑⠗⠀⠊⠎⠀⠛⠕⠊⠝⠛⠀⠞⠕⠀⠙⠕⠀⠺⠓⠁⠞⠀⠺⠓⠁⠞⠀⠞⠓⠑⠽⠀⠝⠑⠑⠙⠀⠞⠕⠀⠙⠕⠀⠊⠝⠀⠕⠗⠙⠑⠗⠀⠞⠕⠀⠓⠁⠧⠑⠀⠎⠕⠍⠑⠀⠎⠕⠗⠞⠀⠕⠋⠀⠎⠓⠁⠗⠑⠙⠀⠉⠕⠝⠉⠇⠥⠎⠊⠕⠝⠀⠕⠗⠀⠗⠁⠍⠊⠋⠊⠉⠁⠞⠊⠕⠝⠀⠞⠕⠀⠞⠓⠑⠀⠉⠕⠕⠏⠑⠗⠁⠞⠊⠕⠝⠀⠁⠝⠙⠀⠞⠓⠁⠞⠄⠎⠀⠗⠑⠁⠇⠇⠽⠀⠁⠀⠃⠊⠛⠀⠉⠕⠍⠏⠕⠝⠑⠝⠞⠀⠕⠋⠀⠺⠑⠃⠀⠒⠀⠺⠑⠃⠀⠒⠀⠊⠎⠀⠗⠑⠁⠇⠇⠽⠀⠁⠃⠕⠥⠞⠀⠁⠇⠇⠕⠺⠊⠝⠛⠀⠏⠑⠕⠏⠇⠑⠀⠞⠕⠀⠉⠕⠍⠑⠀⠞⠕⠛⠑⠞⠓⠑⠗⠀⠁⠝⠙⠀⠉⠕⠕⠗⠙⠊⠝⠁⠞⠑⠀⠞⠓⠑⠊⠗⠀⠑⠋⠋⠕⠗⠞⠎⠀⠋⠕⠗⠀⠎⠕⠍⠑⠞⠓⠊⠝⠛⠀⠛⠗⠑⠁⠞⠑⠗⠀⠞⠓⠑⠀⠞⠓⠁⠝⠀⠞⠓⠑⠀⠎⠥⠍⠀⠕⠋⠀⠊⠞⠎⠀⠏⠁⠗⠞⠎⠀⠪⠍⠥⠎⠊⠉⠻

With Git Actions Workflow file for this run as example in real-time

available OS's: [ windows-latest, macos-latest, ubuntu-latest ]

name: Cross-platform matrix run
on: [push]
jobs:
  build:
    runs-on: ${{ matrix.os }}
    strategy:
      matrix:
        os: [ubuntu-latest]
        python-version: ['3.6', '3.9']
        exclude:
          - os: ubuntu-latest
            python-version: '3.6'
    steps:
      - uses: actions/[email protected]
      - name: Set up Python
        uses: actions/[email protected]
        with:
          python-version: ${{ matrix.python-version }}
      - name: Install dependencies 
        run: pip install youtube_transcript_api scrapetube codext
      - name: Web3 Foundation videos to braille language 
        run: python tube.py

For Support && Nominations

  • Display name. KSMNETWORK

  • Email [email protected]

  • Riot @gtoocool:matrix.org

  • KUSAMA (KSM) Address

  • H1bSKJxoxzxYRCdGQutVqFGeW7xU3AcN6vyEdZBU7Qb1rsZ

  • PolkaDOT (DOT) Address:

  • 15FxvBFDd3X7H9qcMGqsiuvFYEg4D3mBoTA2LQufreysTHKA

  • https://ksm.network

Owner
Little Endian
Riot @gtoocool:matrix.org                  KUSAMA Address:  H1bSKJxoxzxYRCdGQutVqFGeW7xU3AcN6vyEdZBU7Qb1rsZ
Little Endian
Pytorch-version BERT-flow: One can apply BERT-flow to any PLM within Pytorch framework.

Pytorch-version BERT-flow: One can apply BERT-flow to any PLM within Pytorch framework.

Ubiquitous Knowledge Processing Lab 59 Dec 01, 2022
Malaya-Speech is a Speech-Toolkit library for bahasa Malaysia, powered by Deep Learning Tensorflow.

Malaya-Speech is a Speech-Toolkit library for bahasa Malaysia, powered by Deep Learning Tensorflow. Documentation Proper documentation is available at

HUSEIN ZOLKEPLI 151 Jan 05, 2023
Coreference resolution for English, French, German and Polish, optimised for limited training data and easily extensible for further languages

Coreferee Author: Richard Paul Hudson, Explosion AI 1. Introduction 1.1 The basic idea 1.2 Getting started 1.2.1 English 1.2.2 French 1.2.3 German 1.2

Explosion 70 Dec 12, 2022
Arabic speech recognition, classification and text-to-speech.

klaam Arabic speech recognition, classification and text-to-speech using many advanced models like wave2vec and fastspeech2. This repository allows tr

ARBML 177 Dec 27, 2022
Implementation of N-Grammer, augmenting Transformers with latent n-grams, in Pytorch

N-Grammer - Pytorch Implementation of N-Grammer, augmenting Transformers with latent n-grams, in Pytorch Install $ pip install n-grammer-pytorch Usage

Phil Wang 66 Dec 29, 2022
Search-Engine - 📖 AI based search engine

Search Engine AI based search engine that was trained on 25000 samples, feel free to train on up to 1.2M sample from kaggle dataset, link below StackS

Vladislav Kruglikov 2 Nov 29, 2022
Language-Agnostic SEntence Representations

LASER Language-Agnostic SEntence Representations LASER is a library to calculate and use multilingual sentence embeddings. NEWS 2019/11/08 CCMatrix is

Facebook Research 3.2k Jan 04, 2023
Autoregressive Entity Retrieval

The GENRE (Generative ENtity REtrieval) system as presented in Autoregressive Entity Retrieval implemented in pytorch. @inproceedings{decao2020autoreg

Meta Research 611 Dec 16, 2022
This repo is to provide a list of literature regarding Deep Learning on Graphs for NLP

This repo is to provide a list of literature regarding Deep Learning on Graphs for NLP

Graph4AI 230 Nov 22, 2022
Minimal GUI for accessing the Watson Text to Speech service.

Description Minimal graphical application for accessing the Watson Text to Speech service. Requirements Python 3 plus all dependencies listed in requi

Moritz Maxeiner 1 Oct 22, 2021
Contains the code and data for our #ICSE2022 paper titled as "CodeFill: Multi-token Code Completion by Jointly Learning from Structure and Naming Sequences"

CodeFill This repository contains the code for our paper titled as "CodeFill: Multi-token Code Completion by Jointly Learning from Structure and Namin

Software Analytics Lab 11 Oct 31, 2022
HuggingSound: A toolkit for speech-related tasks based on HuggingFace's tools

HuggingSound HuggingSound: A toolkit for speech-related tasks based on HuggingFace's tools. I have no intention of building a very complex tool here.

Jonatas Grosman 247 Dec 26, 2022
An A-SOUL Text Generator Based on CPM-Distill.

ASOUL-Generator-Backend 本项目为 https://asoul.infedg.xyz/ 的后端。 模型为基于 CPM-Distill 的 transformers 转化版本 CPM-Generate-distill 训练而成。

infinityedge 46 Dec 11, 2022
Sinkhorn Transformer - Practical implementation of Sparse Sinkhorn Attention

Sinkhorn Transformer This is a reproduction of the work outlined in Sparse Sinkhorn Attention, with additional enhancements. It includes a parameteriz

Phil Wang 217 Nov 25, 2022
Unofficial implementation of Google's FNet: Mixing Tokens with Fourier Transforms

FNet: Mixing Tokens with Fourier Transforms Pytorch implementation of Fnet : Mixing Tokens with Fourier Transforms. Citation: @misc{leethorp2021fnet,

Rishikesh (ऋषिकेश) 217 Dec 05, 2022
Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System

Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System Authors: Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai

Amazon Web Services - Labs 124 Jan 03, 2023
Natural Language Processing Specialization

Natural Language Processing Specialization In this folder, Natural Language Processing Specialization projects and notes can be found. WHAT I LEARNED

Kaan BOKE 3 Oct 06, 2022
Espial is an engine for automated organization and discovery of personal knowledge

Live Demo (currently not running, on it) Espial is an engine for automated organization and discovery in knowledge bases. It can be adapted to run wit

Uzay-G 159 Dec 30, 2022
Telegram AI chat bot written in Python using Pyrogram

Aurora_Al Just another Telegram AI chat bot written in Python using Pyrogram. A public running instance can be found on telegram as @AuroraAl. Require

♗CσNϙUҽRσR_MҽSƙEƚҽҽR 1 Oct 31, 2021
PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis

PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis

YangHeng 567 Jan 07, 2023