Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

Overview

Text-AutoAugment (TAA)

This repository contains the code for our paper Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification (EMNLP 2021 main conference).

Overview of IAIS

Overview

  1. We present a learnable and compositional framework for data augmentation. Our proposed algorithm automatically searches for the optimal compositional policy, which improves the diversity and quality of augmented samples.

  2. In low-resource and class-imbalanced regimes of six benchmark datasets, TAA significantly improves the generalization ability of deep neural networks like BERT and effectively boosts text classification performance.

Getting Started

  1. Prepare environment

    conda create -n taa python=3.6
    conda activate taa
    conda install pytorch torchvision cudatoolkit=10.0 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch
    pip install -r requirements.txt 
    python -c "import nltk; nltk.download('wordnet'); nltk.download('averaged_perceptron_tagger')"
  2. Modify dataroot parameter in confs/*yaml and abspath parameter in script/*.sh:

    • e.g., change dataroot: /home/renshuhuai/TextAutoAugment/data/aclImdb in confs/bert_imdb.yaml to dataroot: path-to-your-TextAutoAugment/data/aclImdb
    • change --abspath '/home/renshuhuai/TextAutoAugment' in script/imdb_lowresource.sh to --abspath 'path-to-your-TextAutoAugment'
  3. Search for the best augmentation policy, e.g., low-resource regime for IMDB:

    sh script/imdb_lowresource.sh

    scripts for policy search in the low-resource and class-imbalanced regime for all datasets are provided in the script/ fold.

  4. Train a model with pre-searched policy in archive.py, e.g., train model in low-resource regime for IMDB:

    python train.py -c confs/bert_imdb.yaml 

    train model on full dataset of IMDB:

    python train.py -c confs/bert_imdb.yaml --train-npc -1 --valid-npc -1 --test-npc -1  

Contact

If you have any questions related to the code or the paper, feel free to email Shuhuai (renshuhuai007 [AT] gmail [DOT] com).

Acknowledgments

Code refers to: fast-autoaugment.

Citation

If you find this code useful for your research, please consider citing:

@inproceedings{ren2021taa,
  title={Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification},
  author={Shuhuai Ren, Jinchao Zhang, Lei Li, Xu Sun, Jie Zhou},
  booktitle={EMNLP},
  year={2021}
}

License

MIT

Owner
LancoPKU
Language Computing and Machine Learning Group (Xu Sun's group) at Peking University
LancoPKU
Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents

Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents [Project Page] [Paper] [Video] Wenlong Huang1, Pieter Abbee

Wenlong Huang 114 Dec 29, 2022
Chinese real time voice cloning (VC) and Chinese text to speech (TTS).

Chinese real time voice cloning (VC) and Chinese text to speech (TTS). 好用的中文语音克隆兼中文语音合成系统,包含语音编码器、语音合成器、声码器和可视化模块。

Kuang Dada 6 Nov 08, 2022
Learning General Purpose Distributed Sentence Representations via Large Scale Multi-task Learning

GenSen Learning General Purpose Distributed Sentence Representations via Large Scale Multi-task Learning Sandeep Subramanian, Adam Trischler, Yoshua B

Maluuba Inc. 309 Oct 19, 2022
Library for Russian imprecise rhymes generation

TOM RHYMER Library for Russian imprecise rhymes generation. Quick Start Generate rhymes by any given rhyme scheme (aabb, abab, aaccbb, etc ...): from

Alexey Karnachev 6 Oct 18, 2022
The official implementation of VAENAR-TTS, a VAE based non-autoregressive TTS model.

VAENAR-TTS This repo contains code accompanying the paper "VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis". Sa

THUHCSI 138 Oct 28, 2022
Bu Chatbot, Konya Bilim Merkezi Yen için tasarlanmış olan bir projedir.

chatbot Bu Chatbot, Konya Bilim Merkezi Yeni Ufuklar Sergisi için 2021 Yılında tasarlanmış olan bir projedir. Chatbot Python ortamında yazılmıştır. Sö

Emre Özkul 1 Feb 23, 2022
Translate - a PyTorch Language Library

NOTE PyTorch Translate is now deprecated, please use fairseq instead. Translate - a PyTorch Language Library Translate is a library for machine transl

775 Dec 24, 2022
🦆 Contextually-keyed word vectors

sense2vec: Contextually-keyed word vectors sense2vec (Trask et. al, 2015) is a nice twist on word2vec that lets you learn more interesting and detaile

Explosion 1.5k Dec 25, 2022
A simple word search made in python

Word Search Puzzle A simple word search made in python Usage $ python3 main.py -h usage: main.py [-h] [-c] [-f FILE] Generates a word s

Magoninho 16 Mar 10, 2022
Weakly-supervised Text Classification Based on Keyword Graph

Weakly-supervised Text Classification Based on Keyword Graph How to run? Download data Our dataset follows previous works. For long texts, we follow C

Hello_World 20 Dec 29, 2022
Official source for spanish Language Models and resources made @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish Language Models 💃🏻 Corpora 📃 Corpora Number of documents Size (GB) BNE 201,080,084 570GB Models 🤖 RoBERTa-base BNE: https://huggingface.co

PlanTL-SANIDAD 203 Dec 20, 2022
Multilingual text (NLP) processing toolkit

polyglot Polyglot is a natural language pipeline that supports massive multilingual applications. Free software: GPLv3 license Documentation: http://p

RAMI ALRFOU 2.1k Jan 07, 2023
Unsupervised Abstract Reasoning for Raven’s Problem Matrices

Unsupervised Abstract Reasoning for Raven’s Problem Matrices This code is the implementation of our TIP paper. This is the first unsupervised abstract

Tao Zhuo 9 Dec 17, 2022
Flexible interface for high-performance research using SOTA Transformers leveraging Pytorch Lightning, Transformers, and Hydra.

Flexible interface for high performance research using SOTA Transformers leveraging Pytorch Lightning, Transformers, and Hydra. What is Lightning Tran

Pytorch Lightning 581 Dec 21, 2022
The code for two papers: Feedback Transformer and Expire-Span.

transformer-sequential This repo contains the code for two papers: Feedback Transformer Expire-Span The training code is structured for long sequentia

Meta Research 125 Dec 25, 2022
pyMorfologik MorfologikpyMorfologik - Python binding for Morfologik.

Python binding for Morfologik Morfologik is Polish morphological analyzer. For more information see http://github.com/morfologik/morfologik-stemming/

Damian Mirecki 18 Dec 29, 2021
Python wrapper for Stanford CoreNLP tools v3.4.1

Python interface to Stanford Core NLP tools v3.4.1 This is a Python wrapper for Stanford University's NLP group's Java-based CoreNLP tools. It can eit

Dustin Smith 610 Sep 07, 2022
189 Jan 02, 2023
Examples of using sparse attention, as in "Generating Long Sequences with Sparse Transformers"

Status: Archive (code is provided as-is, no updates expected) Update August 2020: For an example repository that achieves state-of-the-art modeling pe

OpenAI 1.3k Dec 28, 2022
A fast Text-to-Speech (TTS) model. Work well for English, Mandarin/Chinese, Japanese, Korean, Russian and Tibetan (so far). 快速语音合成模型,适用于英语、普通话/中文、日语、韩语、俄语和藏语(当前已测试)。

简体中文 | English 并行语音合成 [TOC] 新进展 2021/04/20 合并 wavegan 分支到 main 主分支,删除 wavegan 分支! 2021/04/13 创建 encoder 分支用于开发语音风格迁移模块! 2021/04/13 softdtw 分支 支持使用 Sof

Atomicoo 161 Dec 19, 2022