Keras like implementation of Deep Learning architectures from scratch using numpy.

Overview

Mini-Keras

Keras like implementation of Deep Learning architectures from scratch using numpy.

How to contribute?

The project contains implementations for various activation functions, layers, loss functions, model structures and optimizers in files activation.py, layer.py, loss.py, model.py and optimizer.py respectively.

Given below is list of available implementations (which may or may not require any improvements).

Activation Functions Status
Sigmoid Available
ReLU Required
Softmax Required
Layer Status
Dense Available
Conv2D Available
MaxPool2D Available
Flatten Available
BasicRNN Required
Loss Function Status
BinaryCrossEntropy Available
CategoricalCrossEntropy Required
Model Structure Status
Sequential Available
Optimizer Status
GradientDescentOptimizer Available
AdamOptimizer Required
AdaGradOptimizer Required
GradientDescentOptimizer (with Nesterov) Required

Each of the implementations are class-based and follows a keras like structure. A typical model training with Mini-Keras looks like this,

from model import Sequential
from layer import Dense, Conv2D, MaxPool2D, Flatten
from loss import BinaryCrossEntropy
from activation import Sigmoid
from optimizer import GradientDescentOptimizer

model = Sequential()
model.add(Conv2D, ksize=3, stride=1, activation=Sigmoid(), input_size=(8,8,1), filters=1, padding=0)
model.add(MaxPool2D, ksize=2, stride=1, padding=0)
model.add(Conv2D, ksize=2, stride=1, activation=Sigmoid(), filters=1, padding=0)
model.add(Flatten)
model.add(Dense, units=1, activation=Sigmoid())
model.summary()

model.compile(BinaryCrossEntropy())

print("Initial Loss", model.evaluate(X, y)[0])
model.fit(X, y, n_epochs=100, batch_size=300, learning_rate=0.003, optimizer=GradientDescentOptimizer(), verbose=1)
print("Final Loss", model.evaluate(X, y)[0])

As you might have noticed, its very similar to how one will do it in Keras.

Testing new functionalities

The run.py consists of a small code snippet that can be used to test if your new implementation is working properly or not.

Implementation Details

All the implementations have a forward propagation and a backward propagation equivalent available as a method in the corresponding class. Below are the details for implementing all the functionalities under different categories.

README.ipynb explains each of the implementations with mathematical proofs for better understanding.

Owner
MANU S PILLAI
I have no special talents. I am only passionately curious. | Just MachineLearning |
MANU S PILLAI
Self-Learning - Books Papers, Courses & more I have to learn soon

Self-Learning This repository is intended to be used for personal use, all rights reserved to respective owners, please cite original authors and ask

Achint Chaudhary 968 Jan 02, 2022
implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning"

MarginGAN This repository is the implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning". 1."preliminary" is the imp

Van 7 Dec 23, 2022
The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Ren Yurui 261 Jan 09, 2023
PyTorch implementation of U-TAE and PaPs for satellite image time series panoptic segmentation.

Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks (ICCV 2021) This repository is the official implem

71 Jan 04, 2023
Negative Sample is Negative in Its Own Way: Tailoring Negative Sentences forImage-Text Retrieval

NSGDC Some codes in this repo are copied/modified from opensource implementations made available by UNITER, PyTorch, HuggingFace, OpenNMT, and Nvidia.

Zhihao Fan 2 Nov 07, 2022
Supplemental Code for "ImpressionNet :A Multi view Approach to Predict Socio Facial Impressions"

Supplemental Code for "ImpressionNet :A Multi view Approach to Predict Socio Facial Impressions" Environment requirement This code is based on Python

Rohan Kumar Gupta 1 Dec 19, 2021
A python module for scientific analysis of 3D objects based on VTK and Numpy

A lightweight and powerful python module for scientific analysis and visualization of 3d objects.

Marco Musy 1.5k Jan 06, 2023
This is the official source code for SLATE. We provide the code for the model, the training code, and a dataset loader for the 3D Shapes dataset. This code is implemented in Pytorch.

SLATE This is the official source code for SLATE. We provide the code for the model, the training code and a dataset loader for the 3D Shapes dataset.

Gautam Singh 66 Dec 26, 2022
Using NumPy to solve the equations of fluid mechanics together with Finite Differences, explicit time stepping and Chorin's Projection methods

Computational Fluid Dynamics in Python Using NumPy to solve the equations of fluid mechanics 🌊 🌊 🌊 together with Finite Differences, explicit time

Felix KΓΆhler 4 Nov 12, 2022
This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack".

Generative Dynamic Patch Attack This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack". Requirements PyTo

Xiang Li 8 Nov 17, 2022
The official code of "SCROLLS: Standardized CompaRison Over Long Language Sequences".

SCROLLS This repository contains the official code of the paper: "SCROLLS: Standardized CompaRison Over Long Language Sequences". Links Official Websi

TAU NLP Group 39 Dec 23, 2022
PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

Yoonki Jeong 129 Dec 22, 2022
Visyerres sgdf woob - Modules Woob pour l'intranet et autres sites Scouts et Guides de France

Vis'Yerres SGDF - Modules Woob Vous avez le sentiment que l'intranet des Scouts

Thomas Touhey (pas un pseudonyme) 3 Dec 24, 2022
This is just a funny project that we want to see AutoEncoder (AE) can actually work to enhance the features we want

Funny_muscle_enhancer :) 1.Discription: This is just a funny project that we want to see AutoEncoder (AE) can actually work on the some features. We w

Jing-Yao Chen (Jacob) 8 Oct 01, 2022
A hybrid framework (neural mass model + ML) for SC-to-FC prediction

The current workflow simulates brain functional connectivity (FC) from structural connectivity (SC) with a neural mass model. Gradient descent is applied to optimize the parameters in the neural mass

Yilin Liu 1 Jan 26, 2022
6D Grasping Policy for Point Clouds

GA-DDPG [website, paper] Installation git clone https://github.com/liruiw/GA-DDPG.git --recursive Setup: Ubuntu 16.04 or above, CUDA 10.0 or above, py

Lirui Wang 48 Dec 21, 2022
Invasive Plant Species Identification

Invasive_Plant_Species_Identification Used LiDAR Odometry and Mapping (LOAM) to create a 3D point cloud map which can be used to identify invasive pla

2 May 12, 2022
Object DGCNN and DETR3D, Our implementations are built on top of MMdetection3D.

This repo contains the implementations of Object DGCNN (https://arxiv.org/abs/2110.06923) and DETR3D (https://arxiv.org/abs/2110.06922). Our implementations are built on top of MMdetection3D.

Wang, Yue 539 Jan 07, 2023
Pose estimation for iOS and android using TensorFlow 2.0

πŸ’ƒ Mobile 2D Single Person (Or Your Own Object) Pose Estimation for TensorFlow 2.0 This repository is forked from edvardHua/PoseEstimationForMobile wh

tucan9389 165 Nov 16, 2022
WHENet - ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L

HeadPoseEstimation-WHENet-yolov4-onnx-openvino ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L 1. Usage $ git clone htt

Katsuya Hyodo 49 Sep 21, 2022