Implementation of U-Net and SegNet for building segmentation

Overview

Specialized project

Created by Katrine Nguyen and Martin Wangen-Eriksen as a part of our specialized project at Norwegian University of Science and Technology (NTNU).

Models

Most of our code and the U-net model is significantly inspired by this project Unet-for-Person-Segmentation. The SegNet model we created on our own based on other implementations of SegNet in Tensorflow.

Data

The model is trained and tested on Massachusetts Buildings Dataset from Kaggle. The original images where 1500X1500 pixels each over an area of 1500x1500 meters (1mx1m resolution). The original 137 images were cropped into 64x64 pixels and images without building were filtered out.

To make the masks compatible with our model the masks was changed from white (255,255,255) labels to greyscale with value 1. This is done in image_fix.py found in the repo.

Folder structure

Images and masks are saved in local directories and used in data.py and test.py. This is of course possible to change, however if you want to use the exact same code you can follow this folder structure.


.
├── ...
├── building-segmentation                # Directory for all images
│   ├── Images                           # Directory for raw images
│   │   ├── cropped_images_train_64      # Directory for cropped images where number specifies resolution, containg .jpg
│   │   ├── cropped_images_train_128     # Directory for cropped images where number specifies resolution, containg .jpg 
│   │   └── ...                          # More directories with other resolutions
│   ├── Masks                            # Directory for all maskes
│   │   ├── cropped_masks_train_64       # Directory for cropped masks where number specifies resolution, containg .jpg
│   │   ├── cropped_masks_train_128      # Directory for cropped masks where number specifies resolution, containg .jpg 
│   │   └── ...                          # More directories with other resolutions
│   └── Test                             # Miscellaneous information
│       ├── test_64                      # Directory for images where number specifies resolution, containing .jpg
│       └── ...                          # More directories with other resolutions
└── ...
# data.py
    images = glob(os.path.join(dataset_path, "images/cropped_images_train_64/*"))
    masks = glob(os.path.join(dataset_path, "masks/cropped_masks_train_64/*"))
    
    # In main:
        dataset_path = "building-segmentation"
    
# test.py
    test_images = glob("building-segmentation/test/test_64/*")

Running the project

Requirements

Training

Testing

Owner
Martin.w-e
ICT & Engineering student at NTNU, Specialization in Geomatics and Computer Science
Martin.w-e
PyTorch implementation of SmoothGrad: removing noise by adding noise.

SmoothGrad implementation in PyTorch PyTorch implementation of SmoothGrad: removing noise by adding noise. Vanilla Gradients SmoothGrad Guided backpro

SSKH 143 Jan 05, 2023
Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow

Mask R-CNN for Object Detection and Segmentation This is an implementation of Mask R-CNN on Python 3, Keras, and TensorFlow. The model generates bound

Matterport, Inc 22.5k Jan 04, 2023
Official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution"

RealBasicVSR [Paper] This is the official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution, arXiv". This repository contain

Kelvin C.K. Chan 566 Dec 28, 2022
FeTaQA: Free-form Table Question Answering

FeTaQA: Free-form Table Question Answering FeTaQA is a Free-form Table Question Answering dataset with 10K Wikipedia-based {table, question, free-form

Language, Information, and Learning at Yale 40 Dec 13, 2022
ADB-IP-ROTATION - Use your mobile phone to gain a temporary IP address using ADB and data tethering

ADB IP ROTATE This an Python script based on Android Debug Bridge (adb) shell sc

Dor Bismuth 2 Jul 12, 2022
[CVPR 2022 Oral] Versatile Multi-Modal Pre-Training for Human-Centric Perception

Versatile Multi-Modal Pre-Training for Human-Centric Perception Fangzhou Hong1  Liang Pan1  Zhongang Cai1,2,3  Ziwei Liu1* 1S-Lab, Nanyang Technologic

Fangzhou Hong 96 Jan 03, 2023
A machine learning project which can detect and predict the skin disease through image recognition.

ML-Project-2021 A machine learning project which can detect and predict the skin disease through image recognition. The dataset used for this is the H

Debshishu Ghosh 1 Jan 13, 2022
A list of multi-task learning papers and projects.

This page contains a list of papers on multi-task learning for computer vision. Please create a pull request if you wish to add anything. If you are interested, consider reading our recent survey pap

svandenh 297 Dec 17, 2022
The repo contains the code to train and evaluate a system which extracts relations and explanations from dialogue.

The repo contains the code to train and evaluate a system which extracts relations and explanations from dialogue. How do I cite D-REX? For now, cite

Alon Albalak 6 Mar 31, 2022
In this project we predict the forest cover type using the cartographic variables in the training/test datasets.

Kaggle Competition: Forest Cover Type Prediction In this project we predict the forest cover type (the predominant kind of tree cover) using the carto

Marianne Joy Leano 1 Mar 15, 2022
Pytorch implementation of Zero-DCE++

Zero-DCE++ You can find more details here: https://li-chongyi.github.io/Proj_Zero-DCE++.html. You can find the details of our CVPR version: https://li

Chongyi Li 157 Dec 23, 2022
Repository for the paper "PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation", CVPR 2021.

PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation Code repository for the paper: PoseAug: A Differentiable Pose Augme

Pyjcsx 328 Dec 17, 2022
SCAN: Learning to Classify Images without Labels, incl. SimCLR. [ECCV 2020]

Learning to Classify Images without Labels This repo contains the Pytorch implementation of our paper: SCAN: Learning to Classify Images without Label

Wouter Van Gansbeke 1.1k Dec 30, 2022
A PyTorch implementation of "Predict then Propagate: Graph Neural Networks meet Personalized PageRank" (ICLR 2019).

APPNP ⠀ A PyTorch implementation of Predict then Propagate: Graph Neural Networks meet Personalized PageRank (ICLR 2019). Abstract Neural message pass

Benedek Rozemberczki 329 Dec 30, 2022
Train the HRNet model on ImageNet

High-resolution networks (HRNets) for Image classification News [2021/01/20] Add some stronger ImageNet pretrained models, e.g., the HRNet_W48_C_ssld_

HRNet 866 Jan 04, 2023
BigDetection: A Large-scale Benchmark for Improved Object Detector Pre-training

BigDetection: A Large-scale Benchmark for Improved Object Detector Pre-training By Likun Cai, Zhi Zhang, Yi Zhu, Li Zhang, Mu Li, Xiangyang Xue. This

290 Dec 29, 2022
PyTorch Implementation of SSTNs for hyperspectral image classifications from the IEEE T-GRS paper "Spectral-Spatial Transformer Network for Hyperspectral Image Classification: A FAS Framework."

PyTorch Implementation of SSTN for Hyperspectral Image Classification Paper links: SSTN published on IEEE T-GRS. Also, you can directly find the imple

Zilong Zhong 54 Dec 19, 2022
A Comparative Framework for Multimodal Recommender Systems

Cornac Cornac is a comparative framework for multimodal recommender systems. It focuses on making it convenient to work with models leveraging auxilia

Preferred.AI 671 Jan 03, 2023
Official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR)

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

12 Jan 13, 2022
A Fast and Accurate One-Stage Approach to Visual Grounding, ICCV 2019 (Oral)

One-Stage Visual Grounding ***** New: Our recent work on One-stage VG is available at ReSC.***** A Fast and Accurate One-Stage Approach to Visual Grou

Zhengyuan Yang 118 Dec 05, 2022