Anatomy of Matplotlib -- tutorial developed for the SciPy conference

Overview

Introduction

This tutorial is a complete re-imagining of how one should teach users the matplotlib library. Hopefully, this tutorial may serve as inspiration for future restructuring of the matplotlib documentation. Plus, I have some ideas of how to improve this tutorial.

Please fork and contribute back improvements! Feel free to use this tutorial for conferences and other opportunities for training.

The tutorial can be viewed on nbviewer:

Installation

All you need is matplotlib (v1.5 or greater) and jupyter installed. You can use your favorite Python package installer for this:

conda install matplotlib jupyter
git clone https://github.com/matplotlib/AnatomyOfMatplotlib.git
cd AnatomyOfMatplotlib
jupyter notebook

A browser window should appear and you can verify that everything works as expected by clicking on the Test Install.ipynb notebook. There, you will see a "code cell" that you can execute. Run it, and you should see a very simple line plot, indicating that all is well.

Comments
  • Updated the categorical example

    Updated the categorical example

    switched code in example to:

    data = [('apples', 2), ('oranges', 3), ('peaches', 1)]
    fruit, value = zip(*data)
    
    fig, ax = plt.subplots()
    ax.bar(fruit, value, align='center', color='gray')
    plt.show()
    
    opened by story645 7
  • Interactive example demo

    Interactive example demo

    This example is inspired from my severe usage of MATLAB overlay plotting where I plot on a figure and based on its distribution/look I do some operation in backend like moving the image to another directory etc. Hoping this example would become handy for someone like me(who moved from MATLAB plotting)
    Discussion : Twitter Link

    opened by nithinraok 6
  • Fixes #26

    Fixes #26

    • /mpl-data/sample_data/axes_grid folder appears to no longer exists as of matplotlib v2.2.2
    • added /assets folder in repo containing dependent numpy pickle, 'bivariate_normal.npy' file
    • revised load of data in AnatomyOfMatplotlib-Part2-Plotting_Methods_Overview.ipynb to reflect this change
    • tested successfully with matplotlib v2.2.2 and python v3.6.6
    opened by ggodreau 4
  • Add knot to Ugly Tie shape

    Add knot to Ugly Tie shape

    Added geometry to the Ugly Tie polygon to look like a knot.

    It remains a single polygon so color will affect both visible parts.

    At large zooms/resolutions a connection between the right side of the knot and the main tie is visible because the points on right side of the knot are not perfectly in-line with the upper right corner of the tie where the two larger parts of the shape are visible. If this becomes an issue, doing some math to find evenly dividing, aligned points near the current values would make the connecting section of the polygon zero width.

    opened by TheAtomicOption 3
  • New plotting overview

    New plotting overview

    I realize this is a bit last-minute and a big change, but I really feel like we were missing a good overview of the various plotting methods.

    I've added a new Part 2 (and renamed the other sections) to cover this: http://nbviewer.ipython.org/url/geology.beer/scipy2015/tutorial/AnatomyOfMatplotlib-Part2-Plotting_Methods_Overview.ipynb

    I've tried to make a lot of nice summary images of the most commonly-used plotting methods. The "full" gallery can be very overwhelming, so it's useful to give people a condensed version. Also, these

    80% of the new Part 2 is just quickly looking those images so that people are vaguely aware of what's out there. The code to generate them is also there to serve as an example.

    The new section only goes over bar, fill_between and imshow in more detail. It's not anywhere near as long as it looks at first glance.

    opened by joferkington 3
  • Convert to new ipynb format

    Convert to new ipynb format

    The ipython notebook format has changed slightly in recent versions. Notebooks in the old format are automatically converted when they're opened with a more recent version, but I wanted to go ahead and commit the new format versions.

    Otherwise the diffs will be very difficult to read.

    I also added a .gitignore to ignore the hidden checkpoint folder IPython adds, if ipython notebook is run from the source directory.

    opened by joferkington 3
  • imshow color bar

    imshow color bar

    Hello matplotlib developers,

    I was watching the Youtube recording: Anatomy of Matplotlib from SciPy 2018, and I have a question about AnatomyOfMatplotlib/solutions/2.2-vmin_vmax_imshow_and_colorbars.py

    From line 17 to 18...

    for ax, data in zip(axes, [data1, data2, data3]): im = ax.imshow(data, vmin=0, vmax=3, interpolation='nearest')

    I am assuming data3 has bigger values, followed by data2 and data2, since data3 is multiplied by 3. Suppose if I switch the order of the list in line 17 from:

    for ax, data in zip(axes, [data1, data2, data3]):

    to:

    for ax, data in zip(axes, [data3, data2, data1]):

    So, the last im object would data1 which has a 10 by 10 array with max value of 1. Since we are giving the last im object to make the colorbar, would that mean the range color bar spans from 0 to around 1? Or does matplotlib somehow manage to look at all three plotted imshows and perceive that the maximum value amongst the three imshows is around 3?

    Thank you!

    opened by ZarulHanifah 2
  • Chapter 2 subsec colorbars example data missing

    Chapter 2 subsec colorbars example data missing

    Seems like the example data used in chapter 2 at the colorbar example is no longer supported as of py 3.1. bivariate_normal.npy is not in any folder and has apparantly been discontinued.

    opened by Nafalem231 2
  • Overhaul of Part 1

    Overhaul of Part 1

    First off, IPython/Jupyter has recently had a .ipynb format change, so these diffs are rather messy. If I'd thought about it more, I would have made that a separate commit, but I didn't realize until edits were underway.

    At any rate, I've changed Part1 rather significantly. I pruned some things out and expanded others. I'm intending to add another section detailing basic categories of plotting functions, so I removed several of the references to those in this section.

    Even after these changes, Part1 is still rather long. I might split it (particularly the part after the second exercise and before the third) into another section.

    At any rate hopefully you can see where I'm going with this. Thanks, and looking forward to teaching here in a few weeks!

    opened by joferkington 1
  • from __future__ import print_function so print works same for Python 2&3

    from __future__ import print_function so print works same for Python 2&3

    Just finished going through the notebooks with Python3 and everything worked fine except for having to manually modify all the print statements. Figured it could be made to seamlessly work with both Python 2 and 3 by simply using a from __future__ import print_function.

    opened by jarthurgross 1
  • Fix some typos, and cleared cell outputs.

    Fix some typos, and cleared cell outputs.

    Also threw out some extraneous sentences. Keep things simple and straight-forward. Resist the temptation to reveal everything at once. I will leave this up for a little bit for comment and then merge later today.

    opened by WeatherGod 0
  • Remove backend and add resolve nteract: matplotlib.use('nbagg')

    Remove backend and add resolve nteract: matplotlib.use('nbagg')

    Backend is no longer necessary IMO. Using a backend results in the following error on Jupyter.

    Javascript Error: IPython is not defined
    

    Also adding %matplotlib inline before importing matplotlib resolves the displaying of graphs.

    Should I fix them in the notebooks and send a PR?

    Thanks.

    opened by hasibzunair 8
  • make examples progressive

    make examples progressive

    In part 2, the example is too much to do at once. Rather, it would make sense to build up that example as more is taught. Perhaps a new feature for IPython notebooks would be useful (floating cells?)

    opened by WeatherGod 2
Releases(v2.0)
  • v2.0(Jul 25, 2014)

Owner
Matplotlib Developers
Matplotlib Developers
CL-Gym: Full-Featured PyTorch Library for Continual Learning

CL-Gym: Full-Featured PyTorch Library for Continual Learning CL-Gym is a small yet very flexible library for continual learning research and developme

Iman Mirzadeh 36 Dec 25, 2022
Neural Magic Eye: Learning to See and Understand the Scene Behind an Autostereogram, arXiv:2012.15692.

Neural Magic Eye Preprint | Project Page | Colab Runtime Official PyTorch implementation of the preprint paper "NeuralMagicEye: Learning to See and Un

Zhengxia Zou 56 Jul 15, 2022
GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond

GCNet for Object Detection By Yue Cao, Jiarui Xu, Stephen Lin, Fangyun Wei, Han Hu. This repo is a official implementation of "GCNet: Non-local Networ

Jerry Jiarui XU 1.1k Dec 29, 2022
[ACM MM 2021] Joint Implicit Image Function for Guided Depth Super-Resolution

Joint Implicit Image Function for Guided Depth Super-Resolution This repository contains the code for: Joint Implicit Image Function for Guided Depth

hawkey 78 Dec 27, 2022
The implementation of DeBERTa

DeBERTa: Decoding-enhanced BERT with Disentangled Attention This repository is the official implementation of DeBERTa: Decoding-enhanced BERT with Dis

Microsoft 1.2k Jan 06, 2023
v objective diffusion inference code for JAX.

v-diffusion-jax v objective diffusion inference code for JAX, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The models

Katherine Crowson 186 Dec 21, 2022
Code for "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clouds", CVPR 2021

PV-RAFT This repository contains the PyTorch implementation for paper "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clou

Yi Wei 43 Dec 05, 2022
Graph WaveNet apdapted for brain connectivity analysis.

Graph WaveNet for brain network analysis This is the implementation of the Graph WaveNet model used in our manuscript: S. Wein , A. Schüller, A. M. To

4 Dec 17, 2022
A Python multilingual toolkit for Sentiment Analysis and Social NLP tasks

pysentimiento: A Python toolkit for Sentiment Analysis and Social NLP tasks A Transformer-based library for SocialNLP classification tasks. Currently

298 Jan 07, 2023
Code for the paper "TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks"

TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks This is a Python3 / Pytorch implementation of TadGAN paper. The associated

Arun 92 Dec 03, 2022
PRIME: A Few Primitives Can Boost Robustness to Common Corruptions

PRIME: A Few Primitives Can Boost Robustness to Common Corruptions This is the official repository of PRIME, the data agumentation method introduced i

Apostolos Modas 34 Oct 30, 2022
Exploration & Research into cross-domain MEV. Initial focus on ETH/POLYGON.

xMEV, an apt exploration This is a small exploration on the xMEV opportunities between Polygon and Ethereum. It's a data analysis exercise on a few pa

odyslam.eth 7 Oct 18, 2022
unofficial pytorch implementation of RefineGAN

RefineGAN unofficial pytorch implementation of RefineGAN (https://arxiv.org/abs/1709.00753) for CSMRI reconstruction, the official code using tensorpa

xinby17 5 Jul 21, 2022
Implementation of the GVP-Transformer, which was used in the paper "Learning inverse folding from millions of predicted structures" for de novo protein design alongside Alphafold2

GVP Transformer (wip) Implementation of the GVP-Transformer, which was used in the paper Learning inverse folding from millions of predicted structure

Phil Wang 19 May 06, 2022
Code and data (Incidents Dataset) for ECCV 2020 Paper "Detecting natural disasters, damage, and incidents in the wild".

Incidents Dataset See the following pages for more details: Project page: IncidentsDataset.csail.mit.edu. ECCV 2020 Paper "Detecting natural disasters

Ethan Weber 67 Dec 27, 2022
Zsseg.baseline - Zero-Shot Semantic Segmentation

This repo is for our paper A Simple Baseline for Zero-shot Semantic Segmentation

98 Dec 20, 2022
Machine Learning Models were applied to predict the mass of the brain based on gender, age ranges, and head size.

Brain Weight in Humans Variations of head sizes and brain weights in humans Kaggle dataset obtained from this link by Anubhab Swain. Image obtained fr

Anne Livia 1 Feb 02, 2022
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022
Code and data for ACL2021 paper Cross-Lingual Abstractive Summarization with Limited Parallel Resources.

Multi-Task Framework for Cross-Lingual Abstractive Summarization (MCLAS) The code for ACL2021 paper Cross-Lingual Abstractive Summarization with Limit

Yu Bai 43 Nov 07, 2022
Process text, including tokenizing and representing sentences as vectors and Applying some concepts like RNN, LSTM and GRU to create a classifier can detect the language in which a sentence is written from among 17 languages.

Language Identifier What is this ? The goal of this project is to create a model that is able to predict a given sentence language through text proces

Hossam Asaad 9 Dec 15, 2022