CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks

Overview

CALVIN

CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks Oier Mees, Lukas Hermann, Erick Rosete, Wolfram Burgard

We present CALVIN (Composing Actions from Language and Vision), an open-source simulated benchmark to learn long-horizon language-conditioned tasks. Our aim is to make it possible to develop agents that can solve many robotic manipulation tasks over a long horizon, from onboard sensors, and specified only via human language. CALVIN tasks are more complex in terms of sequence length, action space, and language than existing vision-and-language task datasets and supports flexible specification of sensor suites.

💻 Quick Start

To begin, clone this repository locally

git clone --recurse-submodules https://github.com/mees/calvin.git
$ export CALVIN_ROOT=$(pwd)/calvin

Install requirements:

$ cd $CALVIN_ROOT
$ virtualenv -p $(which python3) --system-site-packages calvin_env # or use conda
$ source calvin_env/bin/activate
$ sh install.sh

Download dataset (choose which split you want to download with the argument D, ABC or ABCD):

$ cd $CALVIN_ROOT/dataset
$ sh download_data.sh D | ABC | ABCD

🏋️‍♂️ Train Baseline Agent

Train baseline models:

$ cd $CALVIN_ROOT/calvin_models/calvin_agent
$ python training.py

You want to scale your training to a multi-gpu setup? Just specify the number of GPUs and DDP will automatically be used for training thanks to Pytorch Lightning. To train on all available GPUs:

$ python training.py trainer.gpus=-1

If you have access to a Slurm cluster, we also provide trainings scripts here.

You can use Hydra's flexible overriding system for changing hyperparameters. For example, to train a model with rgb images from both static camera and the gripper camera:

$ python training.py datamodule/observation_space=lang_rgb_static_gripper model/perceptual_encoder=gripper_cam

To train a model with RGB-D from both cameras:

$ python training.py datamodule/observation_space=lang_rgbd_both model/perceptual_encoder=RGBD_both

To train a model with rgb images from the static camera and visual tactile observations:

$ python training.py datamodule/observation_space=lang_rgb_static_tactile model/perceptual_encoder=static_RGB_tactile

To see all available hyperparameters:

$ python training.py --help

To resume a training, just override the hydra working directory :

$ python training.py hydra.run.dir=runs/my_dir

🖼️ Sensory Observations

CALVIN supports a range of sensors commonly utilized for visuomotor control:

  1. Static camera RGB images - with shape 200x200x3.
  2. Static camera Depth maps - with shape 200x200x1.
  3. Gripper camera RGB images - with shape 200x200x3.
  4. Gripper camera Depth maps - with shape 200x200x1.
  5. Tactile image - with shape 120x160x2x3.
  6. Proprioceptive state - EE position (3), EE orientation in euler angles (3), gripper width (1), joint positions (7), gripper action (1).

🕹️ Action Space

In CALVIN, the agent must perform closed-loop continuous control to follow unconstrained language instructions characterizing complex robot manipulation tasks, sending continuous actions to the robot at 30hz. In order to give researchers and practitioners the freedom to experiment with different action spaces, CALVIN supports the following actions spaces:

  1. Absolute cartesian pose - EE position (3), EE orientation in euler angles (3), gripper action (1).
  2. Relative cartesian displacement - EE position (3), EE orientation in euler angles (3), gripper action (1).
  3. Joint action - Joint positions (7), gripper action (1).

💪 Evaluation: The Calvin Challenge

Long-horizon Multi-task Language Control (LH-MTLC)

The aim of the CALVIN benchmark is to evaluate the learning of long-horizon language-conditioned continuous control policies. In this setting, a single agent must solve complex manipulation tasks by understanding a series of unconstrained language expressions in a row, e.g., “open the drawer. . . pick up the blue block. . . now push the block into the drawer. . . now open the sliding door”. We provide an evaluation protocol with evaluation modes of varying difficulty by choosing different combinations of sensor suites and amounts of training environments. To avoid a biased initial position, the robot is reset to a neutral position before every multi-step sequence.

To evaluate a trained calvin baseline agent, run the following command:

$ cd $CALVIN_ROOT/calvin_models/calvin_agent
$ python evaluation/evaluate_policy.py --dataset_path <PATH/TO/DATASET> --train_folder <PATH/TO/TRAINING/FOLDER>

Optional arguments:

  • --checkpoint <PATH/TO/CHECKPOINT>: by default, the evaluation loads the last checkpoint in the training log directory. You can instead specify the path to another checkpoint by adding this to the evaluation command.
  • --debug: print debug information and visualize environment.

If you want to evaluate your own model architecture on the CALVIN challenge, you can implement the CustomModel class in evaluate_policy.py as an interface to your agent. You need to implement the following methods:

  • __init__(): gets called once at the beginning of the evaluation.
  • reset(): gets called at the beginning of each evaluation sequence.
  • step(obs, goal): gets called every step and returns the predicted action.

Then evaluate the model by running:

$ python evaluation/evaluate_policy.py --dataset_path <PATH/TO/DATASET> --custom_model

You are also free to use your own language model instead of using the precomputed language embeddings provided by CALVIN. For this, implement CustomLangEmbeddings in evaluate_policy.py and add --custom_lang_embeddings to the evaluation command.

Multi-task Language Control (MTLC)

Alternatively, you can evaluate the policy on single tasks and without resetting the robot to a neutral position. Note that this evaluation is currently only available for our baseline agent.

$ python evaluation/evaluate_policy_singlestep.py --dataset_path <PATH/TO/DATASET> --train_folder <PATH/TO/TRAINING/FOLDER> [--checkpoint <PATH/TO/CHECKPOINT>] [--debug]

Pre-trained Model

Download the MCIL model checkpoint trained on the static camera rgb images on environment D.

$ wget http://calvin.cs.uni-freiburg.de/model_weights/D_D_static_rgb_baseline.zip
$ unzip D_D_static_rgb_baseline.zip

💬 Relabeling Raw Language Annotations

You want to try learning language conditioned policies in CALVIN with a new awesome language model?

We provide an example script to relabel the annotations with different language model provided in SBert, such as the larger MPNet (paraphrase-mpnet-base-v2) or its corresponding multilingual model (paraphrase-multilingual-mpnet-base-v2). The supported options are "mini", "mpnet" and "multi". If you want to try different SBert models, just change the model name here.

cd $CALVIN_ROOT/calvin_models/calvin_agent
python utils/relabel_with_new_lang_model.py +path=$CALVIN_ROOT/dataset/task_D_D/ +name_folder=new_lang_model_folder model.nlp_model=mpnet

If you additionally want to sample different language annotations for each sequence (from the same task annotations) in the training split run the same command with the parameter reannotate=true.

📈 SOTA Models

Open-source models that outperform the MCIL baselines from CALVIN:

Contact Oier to add your model here.

Reinforcement Learning with CALVIN

Are you interested in trying reinforcement learning agents for the different manipulation tasks in the CALVIN environment? We provide a google colab to showcase how to leverage the CALVIN task indicators to learn RL agents with a sparse reward.

Citation

If you find the dataset or code useful, please cite:

@article{calvin21,
author = {Oier Mees and Lukas Hermann and Erick Rosete-Beas and Wolfram Burgard},
title = {CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks},
journal={arXiv preprint arXiv:2112.03227},
year = 2021,
}

License

MIT License

Owner
Oier Mees
PhD Student at the University of Freiburg, Germany. Researcher in Machine Learning and Robotics.
Oier Mees
This package implements the algorithms introduced in Smucler, Sapienza, and Rotnitzky (2020) to compute optimal adjustment sets in causal graphical models.

optimaladj: A library for computing optimal adjustment sets in causal graphical models This package implements the algorithms introduced in Smucler, S

Facundo Sapienza 6 Aug 04, 2022
MlTr: Multi-label Classification with Transformer

MlTr: Multi-label Classification with Transformer This is official implement of "MlTr: Multi-label Classification with Transformer". Abstract The task

程星 38 Nov 08, 2022
TensorFlow implementation of "TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?"

TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? Source: Improving Vision Transformer Efficiency and Accuracy by Learning to Tokenize

Aritra Roy Gosthipaty 23 Dec 24, 2022
Adaptive Denoising Training (ADT) for Recommendation.

DenoisingRec Adaptive Denoising Training for Recommendation. This is the pytorch implementation of our paper at WSDM 2021: Denoising Implicit Feedback

Wenjie Wang 51 Dec 30, 2022
Digan - Official PyTorch implementation of Generating Videos with Dynamics-aware Implicit Generative Adversarial Networks

DIGAN (ICLR 2022) Official PyTorch implementation of "Generating Videos with Dyn

Sihyun Yu 147 Dec 31, 2022
Realtime YOLO Monster Detection With Non Maximum Supression

Realtime-YOLO-Monster-Detection-With-Non-Maximum-Supression Table of Contents In

5 Oct 07, 2022
Code repository for the paper "Tracking People with 3D Representations"

Tracking People with 3D Representations Code repository for the paper "Tracking People with 3D Representations" (paper link) (project site). Jathushan

Jathushan Rajasegaran 77 Dec 03, 2022
[ICCV-2021] An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation

An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation (ICCV 2021) Introduction This is an official pytorch implemen

rongchangxie 42 Jan 04, 2023
PyTorch code for the paper: FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning

FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning This is the PyTorch implementation of our paper: FeatMatch: Feature-Based Augmentat

43 Nov 19, 2022
BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization

BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization Authors: Wojciech Kryściński, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong,

Salesforce 125 Dec 31, 2022
This repository contains the implementation of the following paper: Cross-Descriptor Visual Localization and Mapping

Cross-Descriptor Visual Localization and Mapping This repository contains the implementation of the following paper: "Cross-Descriptor Visual Localiza

Mihai Dusmanu 81 Oct 06, 2022
Text Generation by Learning from Demonstrations

Text Generation by Learning from Demonstrations The README was last updated on March 7, 2021. The repo is based on fairseq (v0.9.?). Paper arXiv Prere

38 Oct 21, 2022
Codebase for BMVC 2021 paper "Text Based Person Search with Limited Data"

Text Based Person Search with Limited Data This is the codebase for our BMVC 2021 paper. Please bear with me refactoring this codebase after CVPR dead

Xiao Han 33 Nov 24, 2022
This is the official source code of "BiCAT: Bi-Chronological Augmentation of Transformer for Sequential Recommendation".

BiCAT This is our TensorFlow implementation for the paper: "BiCAT: Sequential Recommendation with Bidirectional Chronological Augmentation of Transfor

John 15 Dec 06, 2022
An implementation of the proximal policy optimization algorithm

PPO Pytorch C++ This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment t

Martin Huber 59 Dec 09, 2022
An official implementation of "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation" (CVPR 2021) in PyTorch.

BANA This is the implementation of the paper "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation". For more inf

CV Lab @ Yonsei University 59 Dec 12, 2022
Official code of paper: MovingFashion: a Benchmark for the Video-to-Shop Challenge

SEAM Match-RCNN Official code of MovingFashion: a Benchmark for the Video-to-Shop Challenge paper Installation Requirements: Pytorch 1.5.1 or more rec

HumaticsLAB 31 Oct 10, 2022
Code for CMaskTrack R-CNN (proposed in Occluded Video Instance Segmentation)

CMaskTrack R-CNN for OVIS This repo serves as the official code release of the CMaskTrack R-CNN model on the Occluded Video Instance Segmentation data

Q . J . Y 61 Nov 25, 2022
Modular Gaussian Processes

Modular Gaussian Processes for Transfer Learning 🧩 Introduction This repository contains the implementation of our paper Modular Gaussian Processes f

Pablo Moreno-Muñoz 10 Mar 15, 2022
An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise Weight Sharing) by Sensetime Research.

An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise

45 Dec 08, 2022