CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

Related tags

Deep LearningCLUES
Overview

License: MIT

CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

This repo contains the data and source code for baseline models in the NeurIPS 2021 benchmark paper for Constrained Language Understanding Evaluation Standard (CLUES) under MIT License.

Overview

The benchmark data is located in the data directory. We also release source codes for two fine-tuning strategies on CLUES, one with classic fine-tuning and the other with prompt-based fine-tuning.

Classic finetuning

Setup Environment

  1. > git clone [email protected]:microsoft/CLUES.git
  2. > git clone [email protected]:namisan/mt-dnn.git
  3. > cp -rf CLUES/classic_finetuning/ mt-dnn/
  4. > cd mt-dnn/

Run Experiments

  1. Preprocess data
    > bash run_clues_data_process.sh

  2. Train/test Models
    > bash run_clues_batch.sh

Prompt fine-tuning

Setup

  1. cd prompt_finetuning
  2. Run sh setup.sh to automatically fetch dependency codebase and apply our patch for CLUES

Run Experiments

All prompt-based funetuning baselines run commands are in experiments.sh, simple run by sh experiments.sh

Leaderboard

Here we maintain a leaderboard, allowing researchers to submit their results as entries.

Submission Instructions

  • Each submission must be submitted as a pull request modifying the markdown file underlying the leaderboard.
  • The submission must attach an accompanying public paper and public source code for reproducing their results on our dataset.
  • A submission can be toward any subset of tasks in our benchmark, or toward the aggregate leaderboard.
  • For any task targeted by the submission, we require evaluation on (1) 10, 20, and 30 shots, and (2) all 5 splits of the corresponding dataset and a report of their mean and standard deviation.
  • Each leaderboard will be sorted by the 30-shot mean S1 score (where S1 score is a variant of F1 score defined in our paper).
  • The submission should not use data from the 4 other splits during few-shot finetuning of any 1 split, either as extra training set or as validation set for hyperparameter tuning.
  • However, we allow external data, labeled or unlabeled, to be used for such purposes. Each submission using external data must mark the corresponding columns "external labeled" and/or "external unlabeled". Note, in this context, "external data" refers to data used after pretraining (e.g., for task-specific tuning); in particular, methods using existing pretrained models only, without extra data, should not mark either column. For obvious reasons, models cannot be trained on the original labeled datasets from where we sampled the few-shot CLUES data.
  • In the table entry, the submission should include a method name and a citation, hyperlinking to their publicly released source code reproducing the results. See the last entry of the table below for an example.

Abbreviations

  • FT = (classic) finetuning
  • PT = prompt based tuning
  • ICL = in-context learning, in the style of GPT-3
  • μ±σ = mean μ and standard deviation σ across our 5 splits. Aggregate standard deviation is calculated using the sum-of-variance formula from individual tasks' standard deviations.

Benchmarking CLUES for Aggregate 30-shot Evaluation

Shots (K=30) external labeled external unlabeled Average ▼ SST-2 MNLI CoNLL03 WikiANN SQuAD-v2 ReCoRD
Human N N 81.4 83.7 69.4 87.4 82.6 73.5 91.9
T5-Large-770M-FT N N 43.1±6.7 52.3±2.9 36.8±3.8 51.2±0.1 62.4±0.6 43.7±2.7 12±3.8
BERT-Large-336M-FT N N 42.1±7.8 55.4±2.5 33.3±1.4 51.3±0 62.5±0.6 35.3±6.4 14.9±3.4
BERT-Base-110M-FT N N 41.5±9.2 53.6±5.5 35.4±3.2 51.3±0 62.8±0 32.6±5.8 13.1±3.3
DeBERTa-Large-400M-FT N N 40.1±17.8 47.7±9.0 26.7±11 48.2±2.9 58.3±6.2 38.7±7.4 21.1±3.6
RoBERTa-Large-355M-FT N N 40.0±10.6 53.2±5.6 34.0±1.1 44.7±2.6 48.4±6.7 43.5±4.4 16±2.8
RoBERTa-Large-355M-PT N N 90.2±1.8 61.6±3.5
DeBERTa-Large-400M-PT N N 88.4±3.3 62.9±3.1
BERT-Large-336M-PT N N 82.7±4.1 45.3±2.0
GPT3-175B-ICL N N 91.0±1.6 33.2±0.2
BERT-Base-110M-PT N N 79.4±5.6 42.5±3.2
LiST (Wang et al.) N Y 91.3 ±0.7 67.9±3.0
Example (lastname et al.) Y/N Y/N 0±0 0±0 0±0 0±0 0±0 0±0 0±0

Individual Task Performance over Multiple Shots

SST-2

Shots (K) external labeled external unlabeled 10 20 30 ▼ All
GPT-3 (175B) ICL N N 85.9±3.7 92.0±0.7 91.0±1.6 -
RoBERTa-Large PT N N 88.8±3.9 89.0±1.1 90.2±1.8 93.8
DeBERTa-Large PT N N 83.4±5.3 87.8±3.5 88.4±3.3 91.9
Human N N 79.8 83 83.7 -
BERT-Large PT N N 63.2±11.3 78.2±9.9 82.7±4.1 91
BERT-Base PT N N 63.9±10.0 76.7±6.6 79.4±5.6 91.9
BERT-Large FT N N 46.3±5.5 55.5±3.4 55.4±2.5 99.1
BERT-Base FT N N 46.2±5.6 54.0±2.8 53.6±5.5 98.1
RoBERTa-Large FT N N 38.4±21.7 52.3±5.6 53.2±5.6 98.6
T5-Large FT N N 51.2±1.8 53.4±3.2 52.3±2.9 97.6
DeBERTa-Large FT N N 43.0±11.9 40.8±22.6 47.7±9.0 100
Example (lastname et al.) Y/N Y/N 0±0 0±0 0±0 -

MNLI

Shots (K) external labeled external unlabeled 10 20 30 ▼ All
Human N Y 78.1 78.6 69.4 -
LiST (wang et al.) N N 60.5±8.3 67.2±4.5 67.9±3.0 -
DeBERTa-Large PT N N 44.5±8.2 60.7±5.3 62.9±3.1 88.1
RoBERTa-Large PT N N 57.7±3.6 58.6±2.9 61.6±3.5 87.1
BERT-Large PT N N 41.7±1.0 43.7±2.1 45.3±2.0 81.9
BERT-Base PT N N 40.4±1.8 42.1±4.4 42.5±3.2 81
T5-Large FT N N 39.8±3.3 37.9±4.3 36.8±3.8 85.9
BERT-Base FT N N 37.0±5.2 35.2±2.7 35.4±3.2 81.6
RoBERTa-Large FT N N 34.3±2.8 33.4±0.9 34.0±1.1 85.5
BERT-Large FT N N 33.7±0.4 28.2±14.8 33.3±1.4 80.9
GPT-3 (175B) ICL N N 33.5±0.7 33.1±0.3 33.2±0.2 -
DeBERTa-Large FT N N 27.4±14.1 33.6±2.5 26.7±11.0 87.6

CoNLL03

Shots (K) external labeled external unlabeled 10 20 30 ▼ All
Human N N 87.7 89.7 87.4 -
BERT-Base FT N N 51.3±0 51.3±0 51.3±0 -
BERT-Large FT N N 51.3±0 51.3±0 51.3±0 89.3
T5-Large FT N N 46.3±6.9 50.0±0.7 51.2±0.1 92.2
DeBERTa-Large FT N N 50.1±1.2 47.8±2.5 48.2±2.9 93.6
RoBERTa-Large FT N N 50.8±0.5 44.6±5.1 44.7±2.6 93.2

WikiANN

Shots (K) external labeled external unlabeled 10 20 30 ▼ All
Human N N 81.4 83.5 82.6 -
BERT-Base FT N N 62.8±0 62.8±0 62.8±0 88.8
BERT-Large FT N N 62.8±0 62.6±0.4 62.5±0.6 91
T5-Large FT N N 61.7±0.7 62.1±0.2 62.4±0.6 87.4
DeBERTa-Large FT N N 58.5±3.3 57.9±5.8 58.3±6.2 91.1
RoBERTa-Large FT N N 58.5±8.8 56.9±3.4 48.4±6.7 91.2

SQuAD v2

Shots (K) external labeled external unlabeled 10 20 30 ▼ All
Human N N 71.9 76.4 73.5 -
T5-Large FT N N 43.6±3.5 28.7±13.0 43.7±2.7 87.2
RoBERTa-Large FT N N 38.1±7.2 40.1±6.4 43.5±4.4 89.4
DeBERTa-Large FT N N 41.4±7.3 44.4±4.5 38.7±7.4 90
BERT-Large FT N N 42.3±5.6 35.8±9.7 35.3±6.4 81.8
BERT-Base FT N N 46.0±2.4 34.9±9.0 32.6±5.8 76.3

ReCoRD

Shots (K) external labeled external unlabeled 10 20 30 ▼ All
Human N N 94.1 94.2 91.9 -
DeBERTa-Large FT N N 15.7±5.0 16.8±5.7 21.1±3.6 80.7
RoBERTa-Large FT N N 12.0±1.9 9.9±6.2 16.0±2.8 80.3
BERT-Large FT N N 9.9±5.2 11.8±4.9 14.9±3.4 66
BERT-Base FT N N 10.3±1.8 11.7±2.4 13.1±3.3 54.4
T5-Large FT N N 11.9±2.7 11.7±1.5 12.0±3.8 77.3

How do I cite CLUES?

@article{cluesteam2021,
  title={Few-Shot Learning Evaluation in Natural Language Understanding},
  author={Mukherjee, Subhabrata and Liu, Xiaodong and Zheng, Guoqing and Hosseini, Saghar and Cheng, Hao and Yang, Greg and Meek, Christopher and Awadallah, Ahmed Hassan and Gao, Jianfeng},
  year={2021}
}

Acknowledgments

MT-DNN: https://github.com/namisan/mt-dnn
LM-BFF: https://github.com/princeton-nlp/LM-BFF

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
[CVPR 2022 Oral] Rethinking Minimal Sufficient Representation in Contrastive Learning

Rethinking Minimal Sufficient Representation in Contrastive Learning PyTorch implementation of Rethinking Minimal Sufficient Representation in Contras

36 Nov 23, 2022
Exadel CompreFace is a free and open-source face recognition GitHub project

Exadel CompreFace is a leading free and open-source face recognition system Exadel CompreFace is a free and open-source face recognition service that

Exadel 2.6k Jan 04, 2023
RefineGNN - Iterative refinement graph neural network for antibody sequence-structure co-design (RefineGNN)

Iterative refinement graph neural network for antibody sequence-structure co-des

Wengong Jin 83 Dec 31, 2022
Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

16 Nov 19, 2022
Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Rainbow 🌈 An implementation of Rainbow DQN which outperforms the paper's (Hessel et al. 2017) results on 40% of tested games while using 20x less dat

Dominik Schmidt 31 Dec 21, 2022
A tutorial on DataFrames.jl prepared for JuliaCon2021

JuliaCon2021 DataFrames.jl Tutorial This is a tutorial on DataFrames.jl prepared for JuliaCon2021. A video recording of the tutorial is available here

Bogumił Kamiński 106 Jan 09, 2023
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022
Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge

Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge This is an implementation of the paper,

Mutian He 19 Oct 14, 2022
Data-depth-inference - Data depth inference with python

Welcome! This readme will guide you through the use of the code in this reposito

Marco 3 Feb 08, 2022
Multi-objective gym environments for reinforcement learning.

MO-Gym: Multi-Objective Reinforcement Learning Environments Gym environments for multi-objective reinforcement learning (MORL). The environments follo

Lucas Alegre 74 Jan 03, 2023
Code accompanying the paper Shared Independent Component Analysis for Multi-subject Neuroimaging

ShICA Code accompanying the paper Shared Independent Component Analysis for Multi-subject Neuroimaging Install Move into the ShICA directory cd ShICA

8 Nov 07, 2022
Embeddinghub is a database built for machine learning embeddings.

Embeddinghub is a database built for machine learning embeddings.

Featureform 1.2k Jan 01, 2023
Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation.

Distant Supervision for Scene Graph Generation Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation. Introduction The pape

THUNLP 23 Dec 31, 2022
CR-Fill: Generative Image Inpainting with Auxiliary Contextual Reconstruction. ICCV 2021

crfill Usage | Web App | | Paper | Supplementary Material | More results | code for paper ``CR-Fill: Generative Image Inpainting with Auxiliary Contex

182 Dec 20, 2022
Official code for 'Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Learning' [ICCV 2021]

RTFM This repo contains the Pytorch implementation of our paper: Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Lear

Yu Tian 242 Jan 08, 2023
Investigating Attention Mechanism in 3D Point Cloud Object Detection (arXiv 2021)

Investigating Attention Mechanism in 3D Point Cloud Object Detection (arXiv 2021) This repository is for the following paper: "Investigating Attention

52 Nov 19, 2022
MarcoPolo is a clustering-free approach to the exploration of bimodally expressed genes along with group information in single-cell RNA-seq data

MarcoPolo is a method to discover differentially expressed genes in single-cell RNA-seq data without depending on prior clustering Overview MarcoPolo

Chanwoo Kim 13 Dec 18, 2022
BoxInst: High-Performance Instance Segmentation with Box Annotations

Introduction This repository is the code that needs to be submitted for OpenMMLab Algorithm Ecological Challenge, the paper is BoxInst: High-Performan

88 Dec 21, 2022
SparseML is a libraries for applying sparsification recipes to neural networks with a few lines of code, enabling faster and smaller models

SparseML is a toolkit that includes APIs, CLIs, scripts and libraries that apply state-of-the-art sparsification algorithms such as pruning and quantization to any neural network. General, recipe-dri

Neural Magic 1.5k Dec 30, 2022