PSPNet in Chainer

Overview

PSPNet

This is an unofficial implementation of Pyramid Scene Parsing Network (PSPNet) in Chainer.

Training

Requirement

  • Python 3.4.4+
    • Chainer 3.0.0b1+
    • ChainerMN master
    • CuPy 2.0.0b1+
    • ChainerCV 0.6.0+
    • NumPy 1.12.0+
    • tqdm 4.11.0+
pip install chainer --pre
pip install cupy --pre
pip install git+git://github.com/chainer/chainermn
pip install git+git://github.com/chainer/chainercv
pip install tqdm

Inference using converted weights

Requirement

  • Python 3.4.4+
    • Chainer 3.0.0b1+
    • ChainerCV 0.6.0+
    • Matplotlib 2.0.0+
    • CuPy 2.0.0b1+
    • tqdm 4.11.0+

1. Run demo.py

Cityscapes

$ python demo.py -g 0 -m cityscapes -f aachen_000000_000019_leftImg8bit.png

Pascal VOC2012

$ python demo.py -g 0 -m voc2012 -f 2008_000005.jpg

ADE20K

$ python demo.py -g 0 -m ade20k -f ADE_val_00000001.jpg

FAQ

If you get RuntimeError: Invalid DISPLAY variable, how about specifying the matplotlib's backend by an environment variable?

$ MPLBACKEND=Agg python demo.py -g 0 -m cityscapes -f aachen_000000_000019_leftImg8bit.png

Convert weights by yourself

Caffe is NOT needed to convert .caffemodel to Chainer model. Use caffe_pb2.py.

Requirement

  • Python 3.4.4+
    • protobuf 3.2.0+
    • Chainer 3.0.0b1+
    • NumPy 1.12.0+

1. Download the original weights

Please download the weights below from the author's repository:

and then put them into weights directory.

2. Convert weights

$ python convert.py

Reference

  • The original implementation by authors is: hszhao/PSPNet
  • The original paper is:
    • Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, Jiaya Jia, "Pyramid Scene Parsing Network", Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017
You might also like...
Comments
  • Training failes with ModuleNotFoundError when using train_mn.py

    Training failes with ModuleNotFoundError when using train_mn.py

    Hi, I got following error when I tried to train PSP net with your train_mn.py How can I train my PSPNet model?

    [email protected]:/yendo/oss/chainer-pspnet# python3 train_mn.py --result_dir result configs/cityscapes/pspnet.yml
    Warning: using naive communicator because only naive supports CPU-only execution
    ==========================================
    Num process (COMM_WORLD): 1
    Using single_node communicator
    Chainer version: 3.4.0
    ChainerMN version: 1.2.0
    cuda: True, cudnn: True
    result_dir: result
    Traceback (most recent call last):
      File "train_mn.py", line 504, in <module>
        trainer = get_trainer(args)
      File "train_mn.py", line 374, in get_trainer
        model = get_model_from_config(config, comm)
      File "train_mn.py", line 239, in get_model_from_config
        loss.module, loss.name, loss.args, comm)
      File "train_mn.py", line 219, in get_model
        mod = import_module(loss_module)
      File "/root/.pyenv/versions/anaconda3-5.0.1/lib/python3.6/importlib/__init__.py", line 126, in import_module
        return _bootstrap._gcd_import(name[level:], package, level)
      File "<frozen importlib._bootstrap>", line 994, in _gcd_import
      File "<frozen importlib._bootstrap>", line 971, in _find_and_load
      File "<frozen importlib._bootstrap>", line 941, in _find_and_load_unlocked
      File "<frozen importlib._bootstrap>", line 219, in _call_with_frames_removed
      File "<frozen importlib._bootstrap>", line 994, in _gcd_import
      File "<frozen importlib._bootstrap>", line 971, in _find_and_load
      File "<frozen importlib._bootstrap>", line 953, in _find_and_load_unlocked
    ModuleNotFoundError: No module named 'loss'
    
    opened by jo7ueb 0
  • Training Fails with IndexError when using train.py

    Training Fails with IndexError when using train.py

    Hi, I got following error when I tried to train PSP net with your train.py How can I train my PSPNet model?

    [email protected]:/yendo/oss/chainer-pspnet# python3 train.py --gpu --result_dir result configs/cityscapes/pspnet.yml
    ==========================================
    Chainer version: 3.4.0
    CuPy version: 2.4.0
    Traceback (most recent call last):
      File "train.py", line 483, in <module>
        trainer = get_trainer(args)
      File "train.py", line 339, in get_trainer
        chainer.cuda.available, chainer.cuda.cudnn_enabled, ))
    IndexError: tuple index out of range
    
    opened by jo7ueb 0
  • could you actually train a new model?

    could you actually train a new model?

    Hi, I am currently trying to train the cityscapes dataset with your code, but the result is miserable: still 0.5263158 (=1/19) class accuracy after 120 epochs. Apparently, the loss of training data is converged correctly, so it seems like a perfect over fitting. Since I used the same settings as yours, i am wondering how you managed to reproduce the results(maybe i need less learning rate?). thanks in advance!

    opened by suzukikbp 0
Owner
Shunta Saito
Ph.D in Engineering, Researcher at Preferred Networks, Inc.
Shunta Saito
potpourri3d - An invigorating blend of 3D geometry tools in Python.

A Python library of various algorithms and utilities for 3D triangle meshes and point clouds. Managed by Nicholas Sharp, with new tools added lazily as needed. Currently, mainly bindings to C++ tools

Nicholas Sharp 295 Jan 05, 2023
Automatic Calibration for Non-repetitive Scanning Solid-State LiDAR and Camera Systems

ACSC Automatic extrinsic calibration for non-repetitive scanning solid-state LiDAR and camera systems. System Architecture 1. Dependency Tested with U

KINO 192 Dec 13, 2022
A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Hyunsoo Cho 1 Dec 20, 2021
Code/data of the paper "Hand-Object Contact Prediction via Motion-Based Pseudo-Labeling and Guided Progressive Label Correction" (BMVC2021)

Hand-Object Contact Prediction (BMVC2021) This repository contains the code and data for the paper "Hand-Object Contact Prediction via Motion-Based Ps

Takuma Yagi 13 Nov 07, 2022
This is the repo of the manuscript "Dual-branch Attention-In-Attention Transformer for speech enhancement"

DB-AIAT: A Dual-branch attention-in-attention transformer for single-channel SE

Guochen Yu 68 Dec 16, 2022
Unit-Convertor - Unit Convertor Built With Python

Python Unit Converter This project can convert Weigth,length and ... units for y

Mahdis Esmaeelian 1 May 31, 2022
Meta Self-learning for Multi-Source Domain Adaptation: A Benchmark

Meta Self-Learning for Multi-Source Domain Adaptation: A Benchmark Project | Arxiv | YouTube | | Abstract In recent years, deep learning-based methods

CVSM Group - email: <a href=[email protected]"> 188 Dec 12, 2022
Code for "Neural 3D Scene Reconstruction with the Manhattan-world Assumption" CVPR 2022 Oral

News 05/10/2022 To make the comparison on ScanNet easier, we provide all quantitative and qualitative results of baselines here, including COLMAP, COL

ZJU3DV 365 Dec 30, 2022
A PyTorch implementation of "From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network" (ICCV2021)

From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network The official code of VisionLAN (ICCV2021). VisionLAN successfully a

81 Dec 12, 2022
Text Generation by Learning from Demonstrations

Text Generation by Learning from Demonstrations The README was last updated on March 7, 2021. The repo is based on fairseq (v0.9.?). Paper arXiv Prere

38 Oct 21, 2022
To build a regression model to predict the concrete compressive strength based on the different features in the training data.

Cement-Strength-Prediction Problem Statement To build a regression model to predict the concrete compressive strength based on the different features

Ashish Kumar 4 Jun 11, 2022
MINOS: Multimodal Indoor Simulator

MINOS Simulator MINOS is a simulator designed to support the development of multisensory models for goal-directed navigation in complex indoor environ

194 Dec 27, 2022
Code for the ICML 2021 paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision"

ViLT Code for the paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision" Install pip install -r requirements.txt pip

Wonjae Kim 922 Jan 01, 2023
Pytorch Implementation for NeurIPS (oral) paper: Pixel Level Cycle Association: A New Perspective for Domain Adaptive Semantic Segmentation

Pixel-Level Cycle Association This is the Pytorch implementation of our NeurIPS 2020 Oral paper Pixel-Level Cycle Association: A New Perspective for D

87 Oct 19, 2022
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

Adam Goodge 25 Dec 28, 2022
Ensembling Off-the-shelf Models for GAN Training

Vision-aided GAN video (3m) | website | paper Can the collective knowledge from a large bank of pretrained vision models be leveraged to improve GAN t

345 Dec 28, 2022
On the adaptation of recurrent neural networks for system identification

On the adaptation of recurrent neural networks for system identification This repository contains the Python code to reproduce the results of the pape

Marco Forgione 3 Jan 13, 2022
On-device wake word detection powered by deep learning.

Porcupine Made in Vancouver, Canada by Picovoice Porcupine is a highly-accurate and lightweight wake word engine. It enables building always-listening

Picovoice 2.8k Dec 29, 2022
利用python脚本实现微信、支付宝账单的合并,并保存到excel文件实现自动记账,可查看可视化图表。

KeepAccounts_v2.0 KeepAccounts.exe和其配套表格能够实现微信、支付宝官方导出账单的读取合并,为每笔帐标记类型,并按月份和类型生成可视化图表。再也不用消费一笔记一笔,每月仅需10分钟,记好所有的帐。 作者: MickLife Bilibili: https://spac

159 Jan 01, 2023