Instance-based label smoothing for improving deep neural networks generalization and calibration

Overview

Instance-based Label Smoothing for Neural Networks

  • Pytorch Implementation of the algorithm.
  • This repository includes a new proposed method for instance-based label smoothing in neural networks, where the target probability distribution is not uniformly distributed among incorrect classes. Instead, each incorrect class is going to be assigned a target probability that is proportional to the output score of this particular class relative to all the remaining classes for a network trained with vanilla cross-entropy loss on the hard target labels.
Instance-based Label Smoothing idea
  • The following figure summarizes the idea of our instance-based label smoothing that aims to keep the information about classes similarity structure while training using label smoothing.
Instance-based Label Smoothing process

Requirements

  • Python 3.x
  • pandas
  • numpy
  • pytorch

Usage

Datasets

  • CIFAR10 / CIFAR100 / FashionMNIST

Files Content

The project have a structure as below:

├── Vanilla-cross-entropy.py
├── Label-smoothing.py
├── Instance-based-smoothing.py
├── Models-evaluation.py
├── Network-distillation.py
├── utils
│   ├── data_loader.py
│   ├── utils.py
│   ├── evaluate.py
│   ├── params.json
├── models
│   ├── resnet.py
│   ├── densenet.py
│   ├── inception.py
│   ├── shallownet.py

Vanilla-cross-entropy.py is the file used for training the networks using cross-entropy without label smoothing.
Label-smoothing.py is the file used for training the networks using cross-entropy with standard label smoothing.
Instance-based-smoothing.py is the file used for training the networks using cross-entropy with instance-based label smoothing.
Models-evaluation.py is the file used for evaluation of the trained networks.
Network-distillation.py is the file used for distillation of trained networks into a shallow convolutional network of 5 layers.
models/ includes all the implementations of the different architectures used in our evaluation like ResNet, DenseNet, Inception-V4. Also, the shallow-cnn student network used in distillation experiments.
utils/ includes all utilities functions required for the different models training and evaluation.

Example

python Instance-based-smoothing.py --dataset cifar10 --model resnet18 --num_classes 10

List of Arguments accepted for Codes of Training and Evaluation of Different Models:

--lr type = float, default = 0.1, help = Starting learning rate (A weight decay of $1e^{-4}$ is used).
--tr_size type = float, default = 0.8, help = Size of training set split out of the whole training set (0.2 for validation).
--batch_size type = int, default = 512, help = Batch size of mini-batch training process.
--epochs type = int, default = 100, help = Number of training epochs.
--estop type = int, default = 10, help = Number of epochs without loss improvement leading to early stopping.
--ece_bins type = int, default = 10, help = Number of bins for expected calibration error calculation.
--dataset, type=str, help=Name of dataset to be used (cifar10/cifar100/fashionmnist).
--num_classes type = int, default = 10, help = Number of classes in the dataset.
--model, type=str, help=Name of the model to be trained. eg: resnet18 / resnet50 / inceptionv4 / densetnet (works for FashionMNIST only).

Results

  • Results of the comparison of different methods on 3 datasets using 4 different architectures are reported in the following table.
  • The experiments were repeated 3 times, and average $\pm$ stdev of log loss, expected calibration error (ECE), accuracy, distilled student network accuracy and distilled student log loss metrics are reported.
  • A t-sne visualization for the logits of 3-different classes in CIFAR-10 can be shown below:
Owner
Mohamed Maher
Junior Research Fellow
Mohamed Maher
Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting (ICCV, 2021)

DKPNet ICCV 2021 Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting Baseline of DKPNet is availa

19 Oct 14, 2022
Pytorch implementation of the paper SPICE: Semantic Pseudo-labeling for Image Clustering

SPICE: Semantic Pseudo-labeling for Image Clustering By Chuang Niu and Ge Wang This is a Pytorch implementation of the paper. (In updating) SOTA on 5

Chuang Niu 154 Dec 15, 2022
Implementation of Change-Based Exploration Transfer (C-BET)

Implementation of Change-Based Exploration Transfer (C-BET), as presented in Interesting Object, Curious Agent: Learning Task-Agnostic Exploration.

Simone Parisi 29 Dec 04, 2022
Real-time ground filtering algorithm of cloud points acquired using Terrestrial Laser Scanner (TLS)

This repository contains tools to simulate the ground filtering process of a registered point cloud. The repository contains two filtering methods. The first method uses a normal vector, and fit to p

5 Aug 25, 2022
SegTransVAE: Hybrid CNN - Transformer with Regularization for medical image segmentation

SegTransVAE: Hybrid CNN - Transformer with Regularization for medical image segmentation This repo is the official implementation for SegTransVAE. Seg

Nguyen Truong Hai 4 Aug 04, 2022
Explainer for black box models that predict molecule properties

Explaining why that molecule exmol is a package to explain black-box predictions of molecules. The package uses model agnostic explanations to help us

White Laboratory 172 Dec 19, 2022
Unsupervised Discovery of Object Radiance Fields

Unsupervised Discovery of Object Radiance Fields by Hong-Xing Yu, Leonidas J. Guibas and Jiajun Wu from Stanford University. arXiv link: https://arxiv

Hong-Xing Yu 148 Nov 30, 2022
Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics

[AAAI2022] Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics Overall pipeline of OCN. Paper Link: [arXiv] [AAAI

13 Nov 21, 2022
Robot Hacking Manual (RHM). From robotics to cybersecurity. Papers, notes and writeups from a journey into robot cybersecurity.

RHM: Robot Hacking Manual Download in PDF RHM v0.4 ┃ Read online The Robot Hacking Manual (RHM) is an introductory series about cybersecurity for robo

Víctor Mayoral Vilches 233 Dec 30, 2022
Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces"

Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces" This repo contains the implementation of GEBO algorithm.

Jaeyeon Ahn 2 Mar 22, 2022
BiSeNet based on pytorch

BiSeNet BiSeNet based on pytorch 0.4.1 and python 3.6 Dataset Download CamVid dataset from Google Drive or Baidu Yun(6xw4). Pretrained model Download

367 Dec 26, 2022
Türkiye Canlı Mobese Görüntülerinde Profesyonel Nesne Takip Sistemi

Türkiye Mobese Görüntü Takip Türkiye Mobese görüntülerinde OPENCV ve Yolo ile takip sistemi Multiple Object Tracking System in Turkish Mobese with OPE

15 Dec 22, 2022
Code for reproducing key results in the paper "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets"

Status: Archive (code is provided as-is, no updates expected) InfoGAN Code for reproducing key results in the paper InfoGAN: Interpretable Representat

OpenAI 1k Dec 19, 2022
ROMP: Monocular, One-stage, Regression of Multiple 3D People, ICCV21

Monocular, One-stage, Regression of Multiple 3D People ROMP, accepted by ICCV 2021, is a concise one-stage network for multi-person 3D mesh recovery f

Yu Sun 937 Jan 04, 2023
Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021 [Projec

Zhengqi Li 583 Dec 30, 2022
This is a code repository for the paper "Graph Auto-Encoders for Financial Clustering".

Repository for the paper "Graph Auto-Encoders for Financial Clustering" Requirements Python 3.6 torch torch_geometric Instructions This is a simple c

Edward Turner 1 Dec 02, 2021
Blind Video Temporal Consistency via Deep Video Prior

deep-video-prior (DVP) Code for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior PyTorch implementation | paper | project web

Chenyang LEI 272 Dec 21, 2022
Implementation of 'lightweight' GAN, proposed in ICLR 2021, in Pytorch. High resolution image generations that can be trained within a day or two

512x512 flowers after 12 hours of training, 1 gpu 256x256 flowers after 12 hours of training, 1 gpu Pizza 'Lightweight' GAN Implementation of 'lightwe

Phil Wang 1.5k Jan 02, 2023
Focal and Global Knowledge Distillation for Detectors

FGD Paper: Focal and Global Knowledge Distillation for Detectors Install MMDetection and MS COCO2017 Our codes are based on MMDetection. Please follow

Mesopotamia 261 Dec 23, 2022
This is a Deep Leaning API for classifying emotions from human face and human audios.

Emotion AI This is a Deep Leaning API for classifying emotions from human face and human audios. Starting the server To start the server first you nee

crispengari 5 Oct 02, 2022