Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving

Overview

Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving

This is the source code for our paper Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving by Mu Cai, Hong Zhang, Huijuan Huang, Qichuan Geng, Yixuan Li and Gao Huang. Code is modified from Swapping Autoencoder, StarGAN v2, Image2StyleGAN.

This is a frequency-based image translation framework that is effective for identity preserving and image realism. Our key idea is to decompose the image into low-frequency and high-frequency components, where the high-frequency feature captures object structure akin to the identity. Our training objective facilitates the preservation of frequency information in both pixel space and Fourier spectral space.

model_architecture

1. Swapping Autoencoder

Dataset Preparation

You can download the following datasets:

Then place the training data and validation data in ./swapping-autoencoder/dataset/.

Train the model

You can train the model using either lmdb or folder format. For training the FDIT assisted Swapping Autoencoder, please run:

cd swapping-autoencoder 
bash train.sh

Change the location of the dataset according to your own setting.

Evaluate the model

Generate image hybrids

Place the source images and reference images under the folder ./sample_pair/source and ./sample_pair/ref respectively. The two image pairs should have the exact same index, such as 0.png, 1.png, ...

To generate the image hybrids according to the source and reference images, please run:

bash eval_pairs.sh

Evaluate the image quality

To evaluate the image quality using Fréchet Inception Distance (FID), please run

bash eval.sh

The pretrained model is provided here.

2. Image2StyleGAN

Prepare the dataset

You can place your own images or our official dataset under the folder ./Image2StlyleGAN/source_image. If using our dataset, then unzip it into that folder.

cd Image2StlyleGAN
unzip source_image.zip 

Get the weight files

To get the pretrained weights in StyleGAN, please run:

cd Image2StlyleGAN/weight_files/pytorch
wget https://pages.cs.wisc.edu/~mucai/fdit/karras2019stylegan-ffhq-1024x1024.pt

Run GAN-inversion model:

Single image inversion

Run the following command by specifying the name of the image image_name:

python encode_image_freq.py --src_im  image_name

Group images inversion

Please run

python encode_image_freq_batch.py 

Quantitative Evaluation

To get the image reconstruction metrics such as MSE, MAE, PSNR, please run:

python eval.py         

3. StarGAN v2

Prepare the dataset

Please download the CelebA-HQ-Smile dataset into ./StarGANv2/data

Train the model

To train the model in Tesla V100, please run:

cd StarGANv2
bash train.sh

Evaluation

To get the image translation samples and image quality measures like FID, please run:

bash eval.sh

Pretrained Model

The pretrained model can be found here.

Image Translation Results

FDIT achieves state-of-the-art performance in several image translation and even GAN-inversion models.

demo

Citation

If you use our codebase or datasets, please cite our work:

@article{cai2021frequency,
title={Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving},
author={Cai, Mu and Zhang, Hong and Huang, Huijuan and Geng, Qichuan and Li, Yixuan and Huang, Gao},
journal={In Proceedings of International Conference on Computer Vision (ICCV)},
year={2021}
}
Owner
Mu Cai
Computer Sciences Ph.D. @UW-Madison
Mu Cai
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
GND-Nets (Graph Neural Diffusion Networks) in TensorFlow.

GNDC For submission to IEEE TKDE. Overview Here we provide the implementation of GND-Nets (Graph Neural Diffusion Networks) in TensorFlow. The reposit

Wei Ye 3 Aug 08, 2022
10th place solution for Google Smartphone Decimeter Challenge at kaggle.

Under refactoring 10th place solution for Google Smartphone Decimeter Challenge at kaggle. Google Smartphone Decimeter Challenge Global Navigation Sat

12 Oct 25, 2022
PyTorch implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The official PyTorch implementation of Neural View S

Angtian Wang 20 Oct 09, 2022
Collection of machine learning related notebooks to share.

ML_Notebooks Collection of machine learning related notebooks to share. Notebooks GAN_distributed_training.ipynb In this Notebook, TensorFlow's tutori

Sascha Kirch 14 Dec 22, 2022
An implementation of "Learning human behaviors from motion capture by adversarial imitation"

Merel-MoCap-GAIL An implementation of Merel et al.'s paper on generative adversarial imitation learning (GAIL) using motion capture (MoCap) data: Lear

Yu-Wei Chao 34 Nov 12, 2022
Unofficial implementation of MUSIQ (Multi-Scale Image Quality Transformer)

MUSIQ: Multi-Scale Image Quality Transformer Unofficial pytorch implementation of the paper "MUSIQ: Multi-Scale Image Quality Transformer" (paper link

41 Jan 02, 2023
The description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts.

FMFCC-A This project is the description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts. The FMFCC-A dataset is shared through BaiduCl

18 Dec 24, 2022
DABO: Data Augmentation with Bilevel Optimization

DABO: Data Augmentation with Bilevel Optimization [Paper] The goal is to automatically learn an efficient data augmentation regime for image classific

ElementAI 24 Aug 12, 2022
hipCaffe: the HIP port of Caffe

Caffe Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by the Berkeley Vision and Learning Cent

ROCm Software Platform 126 Dec 05, 2022
Vision-and-Language Navigation in Continuous Environments using Habitat

Vision-and-Language Navigation in Continuous Environments (VLN-CE) Project Website — VLN-CE Challenge — RxR-Habitat Challenge Official implementations

Jacob Krantz 132 Jan 02, 2023
Semantic Segmentation Architectures Implemented in PyTorch

pytorch-semseg Semantic Segmentation Algorithms Implemented in PyTorch This repository aims at mirroring popular semantic segmentation architectures i

Meet Shah 3.3k Dec 29, 2022
TensorFlow, PyTorch and Numpy layers for generating Orthogonal Polynomials

OrthNet TensorFlow, PyTorch and Numpy layers for generating multi-dimensional Orthogonal Polynomials 1. Installation 2. Usage 3. Polynomials 4. Base C

Chuan 29 May 25, 2022
A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs.

PYGON A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs. Installation This code requires to install and run the graph

Yoram Louzoun's Lab 0 Jun 25, 2021
An Intelligent Self-driving Truck System For Highway Transportation

Inceptio Intelligent Truck System An Intelligent Self-driving Truck System For Highway Transportation Note The code is still in development. OS requir

InceptioResearch 11 Jul 13, 2022
PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation

PyGRANSO PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation Please check https://ncvx.org/PyGRANSO for detailed instructions (introd

SUN Group @ UMN 26 Nov 16, 2022
Implementation of Heterogeneous Graph Attention Network

HetGAN Implementation of Heterogeneous Graph Attention Network This is the code repository of paper "Prediction of Metro Ridership During the COVID-19

5 Dec 28, 2021
Encode and decode text application

Text Encoder and Decoder Encode and decode text in many ways using this application! Encode in: ASCII85 Base85 Base64 Base32 Base16 Url MD5 Hash SHA-1

Alice 1 Feb 12, 2022
An unofficial personal implementation of UM-Adapt, specifically to tackle joint estimation of panoptic segmentation and depth prediction for autonomous driving datasets.

Semisupervised Multitask Learning This repository is an unofficial and slightly modified implementation of UM-Adapt[1] using PyTorch. This code primar

Abhinav Atrishi 11 Nov 25, 2022
Tutorials and implementations for "Self-normalizing networks"

Self-Normalizing Networks Tutorials and implementations for "Self-normalizing networks"(SNNs) as suggested by Klambauer et al. (arXiv pre-print). Vers

Institute of Bioinformatics, Johannes Kepler University Linz 1.6k Jan 07, 2023