Galaxy images labelled by morphology (shape). Aimed at ML development and teaching

Overview

GalaxyMNIST

Galaxy images labelled by morphology (shape). Aimed at ML debugging and teaching.

Contains 10,000 images of galaxies (3x64x64), confidently labelled by Galaxy Zoo volunteers as belonging to one of four morphology classes.

Installation

git clone https://github.com/mwalmsley/galaxy_mnist
pip install -e galaxy_mnist

The only dependencies are pandas, scikit-learn, and h5py (for .hdf5 support). (py)torch is required but not specified as a dependency, because you likely already have it and may require a very specific version (e.g. from conda, AWS-optimised, etc).

Use

Simply use as with MNIST:

from galaxy_mnist import GalaxyMNIST

dataset = GalaxyMNIST(
    root='/some/download/folder',
    download=True,
    train=True  # by default, or set False for test set
)

Access the images and labels - in a fixed "canonical" 80/20 train/test division - like so:

images, labels = dataset.data, dataset.targets

You can also divide the data according to your own to your own preferences with load_custom_data:

(custom_train_images, custom_train_labels), (custom_test_images, custom_test_labels) = dataset.load_custom_data(test_size=0.8, stratify=True) 

See load_in_pytorch.py for a working example.

Dataset Details

GalaxyMNIST has four classes: smooth and round, smooth and cigar-shaped, edge-on-disk, and unbarred spiral (you can retrieve this as a list with GalaxyMNIST.classes).

The galaxies are selected from Galaxy Zoo DECaLS Campaign A (GZD-A), which classified images taken by DECaLS and released in DR1 and 2. The images are as shown to volunteers on Galaxy Zoo, except for a 75% crop followed by a resize to 64x64 pixels.

At least 17 people must have been asked the necessary questions, and at least half of them must have answered with the given class. The class labels are therefore much more confident than from, for example, simply labelling with the most common answer to some question.

The classes are balanced exactly equally across the whole dataset (2500 galaxies per class), but only approximately equally (by random sampling) in the canonical train/test split. For a split with exactly equal classes on both sides, use load_custom_data with stratify=True.

You can see the exact choices made to select the galaxies and labels under the reproduce folder. This includes the notebook exploring and selecting choices for pruning the decision tree, and the script for saving the final dataset(s).

Citations and Further Reading

If you use this dataset, please cite Galaxy Zoo DECaLS, the data release paper from which the labels are drawn. Please also acknowledge the DECaLS survey (see the linked paper for an example).

You can find the original volunteer votes (and images) on Zenodo here.

Owner
Mike Walmsley
Mike Walmsley
Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating

No RL No Simulation (NRNS) Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating NRNS is a heriarch

Meera Hahn 20 Nov 29, 2022
CLADE - Efficient Semantic Image Synthesis via Class-Adaptive Normalization (TPAMI 2021)

Efficient Semantic Image Synthesis via Class-Adaptive Normalization (Accepted by TPAMI)

tzt 49 Nov 17, 2022
Official PyTorch implementation of "Synthesis of Screentone Patterns of Manga Characters"

Manga Character Screentone Synthesis Official PyTorch implementation of "Synthesis of Screentone Patterns of Manga Characters" presented in IEEE ISM 2

Tsubota 2 Nov 20, 2021
[CVPR 2021] Released code for Counterfactual Zero-Shot and Open-Set Visual Recognition

Counterfactual Zero-Shot and Open-Set Visual Recognition This project provides implementations for our CVPR 2021 paper Counterfactual Zero-S

144 Dec 24, 2022
Stream images from a connected camera over MQTT, view using Streamlit, record to file and sqlite

mqtt-camera-streamer Summary: Publish frames from a connected camera or MJPEG/RTSP stream to an MQTT topic, and view the feed in a browser on another

Robin Cole 183 Dec 16, 2022
Use tensorflow to implement a Deep Neural Network for real time lane detection

LaneNet-Lane-Detection Use tensorflow to implement a Deep Neural Network for real time lane detection mainly based on the IEEE IV conference paper "To

MaybeShewill-CV 1.9k Jan 08, 2023
DiffWave is a fast, high-quality neural vocoder and waveform synthesizer.

DiffWave DiffWave is a fast, high-quality neural vocoder and waveform synthesizer. It starts with Gaussian noise and converts it into speech via itera

LMNT 498 Jan 03, 2023
A Python package for time series augmentation

tsaug tsaug is a Python package for time series augmentation. It offers a set of augmentation methods for time series, as well as a simple API to conn

Arundo Analytics 278 Jan 01, 2023
Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation

Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation Experiment Setting: CIFAR10 (downloaded and saved in ./DATA

John Seon Keun Yi 38 Dec 27, 2022
Code to replicate the key results from Exploring the Limits of Out-of-Distribution Detection

Exploring the Limits of Out-of-Distribution Detection In this repository we're collecting replications for the key experiments in the Exploring the Li

Stanislav Fort 35 Jan 03, 2023
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

Chao Ma 3k Jan 03, 2023
Unofficial Pytorch Implementation of WaveGrad2

WaveGrad 2 — Unofficial PyTorch Implementation WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis Unofficial PyTorch+Lightning Implementati

MINDs Lab 104 Nov 29, 2022
Python Actor concurrency library

Thespian Actor Library This library provides the framework of an Actor model for use by applications implementing Actors. Thespian Site with Documenta

Kevin Quick 177 Dec 11, 2022
mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms.

mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms. It provides easily interchangeable modeling and planning components, and a set of utility function

Facebook Research 724 Jan 04, 2023
Replication package for the manuscript "Using Personality Detection Tools for Software Engineering Research: How Far Can We Go?" submitted to TOSEM

tosem2021-personality-rep-package Replication package for the manuscript "Using Personality Detection Tools for Software Engineering Research: How Far

Collaborative Development Group 1 Dec 13, 2021
Listing arxiv - Personalized list of today's articles from ArXiv

Personalized list of today's articles from ArXiv Print and/or send to your gmail

Lilianne Nakazono 5 Jun 17, 2022
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023
Code and data of the Fine-Grained R2R Dataset proposed in paper Sub-Instruction Aware Vision-and-Language Navigation

Fine-Grained R2R Code and data of the Fine-Grained R2R Dataset proposed in the EMNLP2020 paper Sub-Instruction Aware Vision-and-Language Navigation. C

YicongHong 34 Nov 15, 2022
SSL_SLAM2: Lightweight 3-D Localization and Mapping for Solid-State LiDAR (mapping and localization separated) ICRA 2021

SSL_SLAM2 Lightweight 3-D Localization and Mapping for Solid-State LiDAR (Intel Realsense L515 as an example) This repo is an extension work of SSL_SL

Wang Han 王晗 1.3k Jan 08, 2023
OSLO: Open Source framework for Large-scale transformer Optimization

O S L O Open Source framework for Large-scale transformer Optimization What's New: December 21, 2021 Released OSLO 1.0. What is OSLO about? OSLO is a

TUNiB 280 Nov 24, 2022